

The JUNO experiment

T₂K-JUNO-HK group @ LLR

(**M. Buizza Avanzini**, O. Drapier, J. Imbe<mark>r, M</mark>. Gonin, Th. A. Mueller)

R. Pain Visit

LLR, 26/05/2015

Neutrino Oscillation Matrix

Why the MH?

Mass Hierarchy (MH)

- 1. helps in to define the goal of searching for $\beta\beta0\nu$
- 2. Is crucial factor for measuring the lepton δ_{CP}
- 3. Is a key parameter of neutrino astronomy (supernova nucleosynthesis) and neutrino cosmology

4. ...

The JUNO Experiment

Jiangmen Underground Neutrino Observatory, a multiple-purpose neutrino experiment, approved in Feb. 2013. ~ 300 M\$.

- 20 kton LS detector
- 3% energ<mark>y resolutio</mark>n
- 700 m underground
- Rich physics possibilities
 - Reactor neutrino for Mass hierarchy and precision measurement of oscillation parameters
 - Supernovae neutrino
 - Geoneutrino
 - Solar neutrino
 - Atmospheric neutrino
 - Exotic searches

Location of JUNO

Antineutrino Detection

Anti-v are observed via Inverse Beta Decay (IBD)

 $\overline{\nu}_e + p \rightarrow e^+ + n$

The energy spectrum is a convolution of flux and cross section ($E_{thr} = 1.8 \text{ MeV}$)

* **Prompt** photons from e⁺ ionisation and annihilation (1-8 MeV) $E_{VIS} \approx E_{v} - (M_n - M_p) + m_e$

* Delayed photons from n capture on H: $\Delta t \sim 200 \mu s$, E=2.2MeV in about 1m

MH determination with reactor anti-v (1)

$$\begin{split} P_{\bar{\nu}_e \to \bar{\nu}_e} \left(L, E \right) &= 1 - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \frac{\Delta m_{21}^2 L}{4E} \\ &- \sin^2 2\theta_{13} \left[\cos^2 \theta_{12} \sin^2 \frac{\Delta m_{31}^2 L}{4E} + \sin^2 \theta_{12} \sin^2 \frac{\Delta m_{32}^2 L}{4E} \right], \end{split}$$

3 oscillation frequencies:

- Low frequency Δm_{21}^2 (~ 7.54 x10⁻⁵ eV²)
- High frequencies: Δm_{31}^2 and Δm_{32}^2 (2.43 x10⁻³ eV²)

7

MH determination with reactor anti-v (2)

$$\begin{array}{lll} \text{If } \mathrm{NH} : \Delta m_{32}^2 > 0 & \Longrightarrow & |\Delta m_{31}^2| > |\Delta m_{32}^2|; \\ \text{if } \mathrm{IH} : \Delta m_{32}^2 < 0 & \Longrightarrow & |\Delta m_{31}^2| < |\Delta m_{32}^2|. \end{array}$$

The goal is to determine the highest frequency

Shifted spectra by a phase ϕ , energy related

Precision energy spectrum measurement interference between the term in Δm^2_{31} and in Δm^2_{32}

MH sensitivity

Ingredients...

✓ 20kt valid target mass ⊕ 36GW reactor power ⊕ 6-years data

✓ 3% energy resolution ⊕ ~1% energy scale uncertainty assumed

✓ Systematics

	Ideal	Real	Shape	B/S (stat.)	B/S (shape)	$ \Delta m^2_{\mu\mu} $
Size	$52.5\mathrm{km}$	Tab. 2-2	1%	4.5%	0.3%	1%
$\Delta\chi^2_{ m MH}$	+16	-4	-1	-0.5	-0.1	+8

- $\sim 3\sigma \rightarrow$ spectral measurement with no Δm^2 external constraint
- $\sim 4\sigma \rightarrow \text{external } \Delta m^2 \text{ measured to } \sim 1\% \text{ error}$

 $(v_{\mu} d_{isappearance} with v-beam off-axis)$

 Δm^2 @~1% by T2K+NOvA

combined analysis [1312 .1477] 9

σ_E : Fundamental design parameter

ENERGY RESOLUTION : 3% @ 1MeV

HUGE LIGHT YIELD

- Highest light collection 1200 p.e./MeV
- Highest photocathode coverage (~ 80%)
- High detection efficiency PMTs (DE ~ 35%)
- Attenuation length ~ 20m
- Detector uniform response and symmetrical (sphere)
- Low electronics & light noise (radio-purity)

Never achieved before!

10

	KamLAND	Borexino	Daya Bay	JUNO
Mass [t]	~1000	~300	~170	20000
Energy resolution	6%/√E	5%/√E	7.5%/√E	3%/√E
Light yield [p.e./MeV]	250	500	200	1200

Detector Concept

Challenges:

- Engineering: mechanics, safety, lifetime, ...
- PMT: high QE, high coverage
- LS: high transparency, low background

JUNO @ LIR

1. Background reduction/control: Top Tracker (simulation + electronics)

2. Energy resolution optimisation: Central Detector (simulation)

Cosmogenic Background

Cosmic μ flux @ JUNO

Overburden: ~700 m

<E_u>: 214 GeV

 μ rate: 0.0031 Hz/m²

Expected μ in the CD: 3 Hz Expected signal: 60-80/day

Isotopes	E_{max}^{β} (MeV)	$T_{1/2}$ (s)	Rate (per day)
⁶ He	$3.51 \ (\beta^{-})$	0.807	544
⁷ Be	$0.861 \ (\beta^{-})$	53.24 day	5438
⁸ Li	$16.0 \ (\beta^{-})$	0.840	938
⁸ B	-	0.77	225
⁹ Li/ ⁸ He	13.6 (β^-+n)	0.18/0.12	94/11
⁹ C	$16.0 \ (\beta^+)$	0.13	30
¹⁰ Be	$0.556 \ (\beta^{-})$	1.51e6 year	1419
^{10}C	$3.65 \ (\beta^+)$	19.3	482
¹¹ Li	20.6	0.009	0.06
¹¹ Be	11.5 (β^{-})	13.8	24
¹¹ C	$0.96 \ (\beta^+)$	1221	0.19 Hz
^{12}Be	11.7 (β^{-})	0.021	0.45
$^{12}B/^{12}N$	$16.0 \ (\beta^{-})$	0.02/0.01	965/17
¹³ B	$13.4 \ (\beta^{-})$	0.017	12
¹³ N	$1.20 \ (\beta^+)$	9.965 min	19
¹⁶ N	$10.42 \ (\beta^-)$	7.13	13

Cosmogenic Background

Cosmic μ flux @ JUNO

Overburden: ~700 m

<E_u>: 214 GeV

 μ rate: 0.0031 Hz/m²

Expected μ in the CD: 3 Hz Expected signal: 60-80/day

Isotopes	E_{max}^{β} (MeV)	$T_{1/2}$ (s)	Rate (per day)
⁶ He	$3.51 \ (\beta^{-})$	0.807	544
⁷ Be	$0.861 \ (\beta^{-})$	53.24 day	5438
⁸ Li	$16.0 \ (\beta^{-})$	0.840	938
⁸ B	-	0.77	225
⁹ Li/ ⁸ He	13.6 (β^-+n)	0.18/0.12	94/11
⁹ C	$16.0 \ (\beta^+)$	0.13	30
¹⁰ Be	$0.556 \ (\beta^{-})$	1.51e6 year	1419
^{10}C	$3.65 \ (\beta^+)$	19.3	482
¹¹ Li	20.6	0.009	0.06
¹¹ Be	$11.5 \ (\beta^{-})$	13.8	24
¹¹ C	$0.96 \ (\beta^+)$	1221	0.19 Hz
^{12}Be	11.7 (β^{-})	0.021	0.45
$^{12}B/^{12}N$	$16.0 \ (\beta^{-})$	0.02/0.01	965/17
¹³ B	$13.4 \ (\beta^{-})$	0.017	12
¹³ N	$1.20 \ (\beta^+)$	9.965 min	19
¹⁶ N	$10.42 \ (\beta^-)$	7.13	13

Muon Top Tracker using Opera

The JUNO cosmic muon tracker will help enormously to evaluate the contribution of the cosmogenic background to the signal.

The baseline of the JUNO Top Tracker is the OPERA Target Tracker (TT)

Geometries (1)

X[m]

Study on the Rock Radioactivity

Abundances measured on a rock sample from the JUNO site:

Fake muons estimation for different configurations and thresholds

		Confid	NING			
Element	Abundance	Rate	Config.	coinc.	0.33p.e. OK	тр.е. Ок
²³² Th	~ 105 Bq/kg	1 . 11 x 10 ⁹ Hz	3 layers	2	1.6E6 (μ: 2.72)	3.6E5 (µ: 2.72)
²³⁸ U	~ 110 Bq/kg	1.17 x 10 ⁹ Hz	3 layers	3	21.1 (µ: 2.3)	2.2 (µ: 2.22)
			4 layers	2	4.6E5 (μ: 2.02)	1.0E5 (μ: 2.01)
⁴⁰ K	~ 1340Bq/kg	1.42 x 10 ¹⁰ Hz	4 layers	3	15.0 (µ: 1.85)	1.4µ (µ: 1.83)

Read out and Trigger

The challenge of the energy resolution

20

The energy resolution (goal 3% @ 1MeV)

can we reach the $\sigma(E)/E \leq 3\%$ (total)?

we reach $\sigma(E)/E(\text{stochastic}) \leq 3\%!!$ [i.e. 1.2kPE/MeV feasible by MC]

can we reach $\sigma(E)/E(\text{non-stochastic})$ improve by 4x wrt today's values?

(current detector design→ good enough?)

Calorimetry regimes in JUNO

Illumination level per PMT varies by ~100x from center(^O) to edge(^O) Ω (solid angle) effects [20" PMT \oplus huge Light Yield]

Energy reconstruction effects (including readout effect) \rightarrow lead to large **non**linearity effects

Strong dependence on the energy and on the position \rightarrow Non-linearity ^① Non uniformity

Multi-Calorimetry Proposal

Adding 3 inch PMTs in the space between the « large PMTS»...

Summary: JUNO @ M

- 1. TT design optimisation
- 2. TT trigger design
- 3. TT DAQ test setup (portable)
- 4. 3" PMTs option study/optimisation
- 5. Participation in the data analysis

Done/ongoing
Started
Started
On going
Future