

Jiangmen Underground Neutrino Observatory (JUNO)

Miao He

Institute of High Energy Physics, Beijing On behalf of the JUNO collaboration

Neutrino Oscillation Workshop Conca Specchiulla (Otranto, Lecce, Italy) September 7-14, 2014

JUNO Collaboration Established (2014.7)

Neutrino Mass Hierarchy

- Next generation neutrino experiments focus on mass hierarchy and CP violation
- Mass hierarchy determination
 - Matter effects in the atmospheric (PINGU, INO, HyperK) and accelerator (LBNE, LBNO, T2HK) neutrinos oscillation
 - Disappearance of reactor electron antineutrino: interference between Δm^2_{31} and Δm^2_{32} (JUNO, RENO50)

$$\begin{split} P_{ee}(L/E) &= 1 - P_{21} - P_{31} - P_{32} \\ P_{21} &= \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21}) \\ P_{31} &= \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31}) \\ P_{32} &= \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32}) \end{split}$$

The Fourier Transformation

$$\begin{aligned} FCT(\omega) &= \int_{t_{min}}^{t_{max}} F(t) \cos(\omega t) \mathrm{d}t \\ FST(\omega) &= \int_{t_{min}}^{t_{max}} F(t) \sin(\omega t) \mathrm{d}t \end{aligned}$$

2014/9/9

The JUNO experiment

NPP	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	Operational	Planned	Planned	Under construction	Under construction
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	18.4 GW

Detector Concept: a Large LS Detector

LS volume: ×20 → more statistics
Light (PE): ×5 → better resolution

NOW2014

Signal and background of reactor antineutrinos

Estimated IBD signal event rate: ~40/day

LS without Gd-loading for

- \Rightarrow Better attenuation length \rightarrow better resolution
- Lower irreducible accidental backgrounds from LS, important for a larger detector:
 - ✓ With Gd: ~ 10^{-12} g/g → 50,000 Hz
 - ✓ Without Gd: $\sim 10^{-16} \text{ g/g} \rightarrow 5 \text{ Hz}$

Backgrounds

 $\tau \sim 200 \ \mu s$

Overburden 700m: $E_{\mu} \sim 211 \text{ GeV}, R_{\mu} \sim 3.8 \text{ Hz}$ Single rates: 5 Hz by LS and 5Hz by PMT muon efficiency ~ 99.5%

	B/S @ DYB EH1	B/S C JUNO	Techniques to be used by JUNO
Accidentals	~1.4%	~10%	Low PMT radioactivity; LS purification; prompt-delayed distance cut
Fast neutron	~0.1%	~0.4%	High muon detection efficiency (similar as DYB)
⁹ Li/ ⁸ He	~0.4%	~0.8%	Muon tracking; If good track, distance to muon track <5m and veto 2s; If shower muon, full volume veto 2s

JUNO Physics: Mass Hierarchy

- Relative measurement (no pre-condition of Δm_{32}^2)
- Absolute measurement (constrain of Δm_{32}^2 from external experiments)
- Baseline optimization: ~53km
- Baseline differences to reactor cores: <500m</p>
- Requirement to energy resolution: $3\%/\sqrt{E}$
- Energy scale determination: self calibration
 - Based on Δm^2_{ee} periodic peaks
 - Relatively insensitive to continuous backgrounds, non-periodic structures
- Sensitivity (6 years, 100k IBDs)
 - Relative measurement : $\Delta \chi^2 > 9$
 - Absolute measurement : $\Delta \chi^2 > 16$

Other Physics in JUNO

Precision measurements of mixing parameters

	Nominal	+B2B(1%)	+BG	+1.0% (EL)	+1.0% NL
$\sin^2 \theta_{12}$	0.54%	0.60%	0.62%	0.64%	0.67%
Δm^2_{21}	0.24%	0.27%	0.29%	0.44%	0.59%
Δm^2_{ee}	0.27%	0.31%	0.31%	0.35%	0.44%

Supernova neutrinos

 Expected events (10kpc): IBD ~5000, other CC+NC+ES ~2000

Geoneutrinos

- Expected event rate: 37TNU
- Main background: reactor antineutrinos
- Solar neutrinos, atmospheric neutrinos, sterile neutrinos, proton decay, exotics

Civil Construction

Central Detector (1)

- A large (D>35m) detector in the water pool
 - Mechanics, optics, chemistry, cleanness, assembly, ...
- Default option: acrylic sphere + stainless steel truss
 - Independent designs from multiple groups
 - Acrylic performances research: strength, bonding, aging, creep
 - Connecting point R&D, making a part of sphere

0.1g seismic load

Aging test

Double nonlinearity

Connecting point test

2014/9/9

NOW2014

10

Central Detector (2)

Backup option : stainless steel tank + acrylic panel + balloon

- Stainless steel tank design is in progress
- Film material: ETFE/FEP/PEPA
- Requirements to leakage and dust
- 12 m prototype design is underway
- PMT related
 - PMT coverage, implosion-proof, HV, sample test

Superlayer layout in latitude: >75%

Module layout: >75%

Possible implosion-proof structure

2014/9/9

NOW2014

High QE PMT

20" PMTs under discussion:

- MCP-PMT with Chinese Industry
- Photonics-type PMT: $8'' \rightarrow 12'' \rightarrow 20''$
- Hammamatzu R5912-100 (SBA)

MCP-PMT development:

- Technical issues mostly resolved
- Successful 8" prototypes
- A few 20" prototypes

	R5912	R5912- 100	MCP- PMT
QE@410nm	25%	35%	25%
Rise time	3 ns	3.4ns	5ns
SPE Amp.	17mV	18mV	17mV
P/V of SPE	>2.5	>2.5	>2.5
TTS	5.5ns	1.5 ns	3.5 ns

Photon detection efficiency: ~30%

20" MCP-PMT

Liquid Scintillator

JUNO LS: LAB+PPO+BisMSB

- No Gd doping: lower radioactivity
- Attenuation: 15m (DYB) -> 30m

R&D efforts:

- Improve raw materials
- Improve the production process
- Purification
 - Column purification (IHEP&TUM)
 - Purification by charcoal (IHEP&JINR)
 - Vacuum distillation (IHEP&Perugia)

Linear Alky Benzene (LAB)	Atte. L(m) @ 430 nm
RAW	14.2
Vacuum distillation	19.5
SiO ₂ column	18.6
Al ₂ O ₃ column	22.3
LAB from Nanjing, Raw	20
Al ₂ O ₃ column	25

2014/9/9

LAB/LS Characterization

Ongoing measurements

- Attenuation length
- Light yield (Optimize concentration of PPO and bis-MSB)
- Impurity
- Rayleigh scattering
- ¹⁴C/¹²C

LS energy response measurements

Setup at IHEP: multiple angular measurements

Setup at TUM: HPGe measurements

Veto System

Goals of veto

- Cosmogenic isotopes rejection
- Neutron background rejection
- Gamma background passive shielding

Water cherenkov detector

- ~1500 20" PMT
- 20~30 kton ultrapure water with a circulation system
- Earth magnetic field shielding
- Tyvek reflector film
- PMT support frame
- Water pool sealing

Water Cherenkov Detector

Top tracker

- Use OPERA Target Tracker
- Additional options are considered to increase the coverage

Readout Electronics and Trigger

Charge and timing info. from 1 GHz FADC

NOW2014

Offline Software

Software framework: SNiPER

- Designed for Noncollider Physics ExpeRiments)
- Flexible event buffer
- Cascade data model
- Minimal external lib required

Detector simulation

- Geant4 based simulation
- Geometry description of different detector options
- Readout electronics simulation
- Background mixing

Event reconstruction

- PMT waveform fitting
- Vertex and energy reconstruction
- Cosmic muon tracking

MC Studies

Optical model

- Based on DYB (tuned to data), except:
- **PMT QE:** 25% → 35%
- LS light yield: 10400 photons/MeV
- LS attenuation length: 20 m @430 nm
 - Absorption 60m
 - Rayleigh scattering 30 m

Detector performance studies

- Vertex and energy resolution: σ_{E}/E^{3} @1MeV
- Effect of steel struts, PMT proof, film transparency, dark noise ...
- Buffer thickness: reduce PMT background
- Optimize fiducial volume
- Muon efficiency in water pool: 99.5%

Energy resolution of two detector options: similar performances

Schedule

- Civil preparation: 2013-2014
- Civil construction: 2014-2017
- Detector component production: 2016-2017
- PMT production: 2016-2019
- Detector assembly & installation: 2018-2019
- Filling & data taking: 2020

Surface Building

Underground Layout

Calibration System Conceptual Designs

- Point radioactive source calibration systems
 - A automatic rope system is the most primary source delivery system
 - Considering a ROV to be more versatile
 - Considering a guide tube system to cover the boundaries and near boundary regions
- Also considering a shortlived diffusive radioactive sources
- A UV laser system being considered to calibrate the LS responses

