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ABSTRACT

Verlinde (2016) has recently proposed that spacetime and gravity may emerge from
an underlying microscopic theory. In a de Sitter spacetime, such emergent gravity
(EG) contains an additional gravitational force due to dark energy, which may explain
the mass discrepancies observed in galactic systems without the need of dark matter.
For a point mass, EG is equivalent to Modified Newtonian Dynamics (MOND). We
show that this equivalence does not hold for finite-size galaxies: there are significant
differences between EG and MOND in the inner regions of galaxies. We confront
theoretical predictions with the empirical Radial Acceleration Relation (RAR). We
find that (i) EG is consistent with the observed RAR only if we substantially decrease
the fiducial stellar mass-to-light ratios; the resulting values are in tension with other
astronomical estimates; (ii) EG predicts that the residuals around the RAR should

correlate with radius; such residual correlation is not observed.
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1 INTRODUCTION

Theoretical studies suggest a close relation between black
holes and thermodynamics (e.g., Bardeen et al. 1973; Beken-
stein 1973; Hawking 1975). Verlinde (2011, 2016) takes the
analogy further to suggest that gravity is not a fundamen-
tal force of Nature, but emerges from an underlying micro-
scopic theory. This proposal has been named “emergent” or
“entropic” gravity (EG). For a de Sitter spacetime with pos-
itive cosmological constant (A), Verlinde (2016) finds that
EG contains an additional gravitational force due to A: this
“dark force” could explain the mass discrepancies observed
in galactic systems without the need of particle dark mat-
ter. Recent studies investigated EG using weak gravitational
lensing (Brouwer et al. 2017), X-ray galaxy clusters (Ettori
et al. 2016), dwarf spheroidal galaxies (Diez-Tejedor et al.
2016), and Solar System tests (Iorio 2016). Here we consider
the dynamics of disc galaxies (spirals and irregulars).

In EG the additional force appears below a character-
istic acceleration scale ag = cHy/6, where Hy is the Hubble
constant and ¢ is the speed of light. This is analogous to
Modified Newtonian Dynamics (MOND, Milgrom 1983), but
the theoretical basis of the two theories are markedly differ-
ent (see Milgrom & Sanders 2016, for a comment). Note that
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Verlinde (2016) uses a slightly different definition of ag; here
we follow the MOND convention with ag =1.2x 10710 m s 2.

MOND dictates that the equations of motion become
scale-invariant at accelerations smaller than ag (Milgrom
2009). This can be achieved through modified laws of grav-
ity (Bekenstein & Milgrom 1984; Milgrom 2010) or inertia
(Milgrom 1994). In modified-inertia theories, test particles
on circular orbits obey the following equation:

2 = V(gb/20) - Zbs (1)

where g; is the observed “total” acceleration, g, is the New-
tonian acceleration from baryonic matter, and v is a free
function of the theory. Eq. 1 is also valid in modified-gravity
formulations of MOND, but only for systems with 1D sym-
metry like a spherical galaxy (Bekenstein & Milgrom 1984).
ag and v are supposed to be universal in disc galaxies and
have been determined empirically by fitting rotation curves
(Begeman et al. 1991; Sanders & McGaugh 2002).

From a pure observational perspective, we have shown
that gy and g; are tightly correlated in galaxies (McGaugh
et al. 2016; Lelli et al. 2016a). Specifically, we have built the
Spitzer Photometry and Accurate Rotation Curves (SPARC)
database (Lelli et al. 2016b): a sample of nearby disc galax-
ies (spirals and irregulars) with precise estimates of g, from
Spitzer images at 3.6 um and g; from HI/Ha observations.
The same radial acceleration relation (RAR) is followed by
~2700 independent points from 153 SPARC galaxies, span-
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Figure 1. Top panels: rotation curves for exponential discs using Newtonian dynamics (dotted line), MOND (dashed line), and EG
(solid line). The mass and scale length of each disc model are indicated at the top. Bottom panels: the location of the model galaxies
on the radial acceleration relation. The blue scale represents ~2700 datapoints from 153 disc galaxies (McGaugh et al. 2016; Lelli et al.

2016a). The lines have the same meaning as in the top panels.

ning ~5 dex in baryonic mass and ~4 dex in baryonic sur-
face density. Other types of galaxies (ellipticals, lenticulars,
and dwarf spheroidals) follow the same relation as SPARC
galaxies (Lelli et al. 2016a). Hence, the RAR seems to be a
universal law for galactic systems.

Here we show that EG leads to the following equation:

2= f(gv/2057) - 2bs (2)

where f is specified by the theory and contains an explicit
dependence on galaxy radius. This implies that (i) mass dis-
crepancies are higher in EG than MOND (Figure 1), (ii) the
RAR should have some intrinsic thickness and the residuals
should correlate with radius (Figure 2).

2 RESULTS
2.1 General Equations

We start from Eq. (7.40) of Verlinde (2016), which relates
the apparent dark mass Mp to the baryonic mass M, for
spherically symmetric systems:
r 2 (4
/ GMp(7) 3)
0
If we differentiate Eq.3 with respect to r and multiply both
terms by G/r?, we can easily derive the gravitational accel-
eration from the apparent dark component:

- dr = Mbaor.
7

GMp

N

Hence, the total centripetal acceleration is given by
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Verlinde (2016) considers the case of a point mass dis-
tribution where dMy,/dr =0. When g, < ag, one recovers the
well-known equation for the deep MOND regime:

V2
&= — =va&-

r

(6)

This naturally explains the observed baryonic Tully-Fisher
relation: V4 = ayGMy, (McGaugh et al. 2000; Lelli et al.
2016¢). In actual galaxies, the point-mass approximation is
sensible only at very large radii. In the following, we con-
sider a more realistic case where the baryonic mass dis-
tribution is extended and symmetric around the center. In
such cases, M} is a monotonically increasing function of r,
reaching an asymptotic limit in order to give a finite mass.
Hence, dMy,/dr is always positive and tends to zero for large
r. Clearly, Eq.5 can be generalized by Eq. 2.

2.2 Disc Models

Eq.5 could be tested by fitting individual disc galaxies,
where g, g, and dM,/dr are known from observations (e.g.,
Lelli et al. 2016b). Here, we limit ourselves to a general anal-
ysis using the RAR. A statistical analysis has the advantage
that observational uncertainties on single objects (like the
assumed distance and inclination) are averaged out.

We stress that Eq.5 is formally valid for spherically
symmetric systems. In Newtonian dynamics (Binney &
Tremaine 1987) as well as in MOND (Brada & Milgrom
1995), the difference between spherical and disc geometry
leads to corrections of the order of ~20% in the inner re-
gions. While important for detailed fits, it is sensible to use
Eq.5 as a starting point in EG for a statistical study.

The surface density distribution of disc galaxies can be
generally described by exponential profiles. Deviations from
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Figure 2. Comparison between the observed RAR (blue scale) and the EG predictions for exponential discs (lines). Different lines show
Eq. 9 for different values of R =R/(2Ry). The red squares show the mean of binned data. The left panel shows the RAR for fiducial values
of Y, at 3.6 um from stellar population synthesis models. The right panel shows the RAR adjusting Y, to accommodate EG predictions.

pure exponentials are common (e.g., Lelli et al. 2016b), but
we will neglect them for the sake of simplicity. The baryonic
mass is then given by

(7)

where the central surface density ¥y and the characteristic
radius Ry can be derived from the observations. Note that
we are now working in cylindrical coordinates (as appropri-
ate for disc galaxies). The gravitational force of a razor-thin
exponential disc is given by:

& (RiRq,Zo) = 2xGEoR[Io(R)Ko(R) — I (R)K1 (R)], (8)

where R = R/(2Rq) and I, and K, are modified Bessel func-
tions of the first and second kind (Freeman 1970). Combin-
ing Eq. 5, Eq.7, and Eq. 8, we derive

_ ag exp(—2R)
&‘%%+V%¢”ﬂmmm®—mmm®&

When gy, > aj, the second term tends to zero and one re-
covers g = g,. When g, < ap, one obtain the deep-MOND
limit gt = \/gpa0 only at large radii. This is guaranteed be-
cause exp(—2R) decreases faster than the denominator which
goes as R~2 (the monopole term dominates the gravitational
potential). However, it is not guaranteed at small and inter-
mediate radii. Consequently, Verlinde’s theory may be ob-
servationally distinguishable from MOND.

Figurel (top panels) shows predicted rotation curves
for four model galaxies with typical values of M, and Ry.
EG (solid lines) predicts larger mass discrepancies in the in-
ner regions than MOND (dashed lines) because it converges
more gradually to the Newtonian regime (dotted lines). In
particular, massive disc galaxies should be sub-maximal in
EG. The predicted rotation curves in EG show a prominent

R
My (< R) = 27Xy / exp(—R/Rq)RdR,
JO

(9)
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decline at intermediate radii and are less flat than in the
MOND case. Declining rotation curves are often observed in
massive spirals with large bulges (Sa to Sb), but are very rare
in low-mass galaxies for which exponential discs are a bet-
ter description of the stellar mass distribution. For low-mass
galaxies, however, one should also account for the gas, which
often dominates the mass budget and is more extended than
the stellar component (e.g., Lelli et al. 2016b). This is be-
yond the scope of our current discussion.

2.3 Comparison with the observations

Figure 1 (bottom panels) shows the location of model galax-
ies on the RAR. In MOND, model galaxies lie exactly on
the mean relation as long as Eq.1 is assumed and some
appropriate v is chosen. We adopt the “simple” function
1) = x/(14x) = v-1(y), where x = g /ag and y = g/ag
(Famaey & Binney 2005). In EG, model galaxies converge
to the mean RAR at large radii, but display a “hook” shape
above the mean RAR at small radii. This “hook” results
from the additional radial dependence in Eq.2 and occurs
at R~ Ry. The difference for a single galaxy may seem small,
but it is systematic.

In Figure 2 (left), we confront EG with the data by plot-
ting Eq. 9 for different values of R. The predictions from EG
lie systematically above our fiducial RAR at either high g,
or small R. We recall, however, that the detailed shape of
the RAR depends on the assumed stellar mass-to-light ra-
tios (Y,) for the disc and bulge components, which are used
to compute gy (see Sect. 4.1 of Lelli et al. 2016a).

In Figure2 (right), we tune the values of Y, to accom-
modate the predictions of EG. We find that both Ypyee and
Ygise must be significantly decreased. The resulting values
cannot be ruled out, but are in tension with other astronom-
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ical estimates (as we discuss in Sect. 3). Moreover, we note
that this tuning exercise becomes less effective at g, < 107!
m s~2 because the gas contribution starts to dominate and
the values of g, are largely insensitive to the assumed Y.
Independently of the value of Y., EG predicts that the
RAR should have some intrinsic thickness and the residuals
around the mean relation should correlate with radius. The
existing data suggests that the RAR is consistent with no in-
trinsic scatter and there is no significant correlation between
residuals and radius (see Figure 4 in Lelli et al. 2016a).

3 DISCUSSION & CONCLUSIONS

In this letter, we build simple models for disc galaxies in
EG (Verlinde 2016) and compare them with the observed
RAR (McGaugh et al. 2016; Lelli et al. 2016a). We find
that EG is consistent with the data only if we change our
fiducial conversions from Spitzer [3.6] luminosity to stellar
mass. EG implies that Ygc =~ 0.2 My /Lo and Ypyge =~ 0.5
Mg /Le on average, which are significantly smaller than our
fiducial values (Ygisc 0.5 Mo /Lo and Ypuige = 0.7 M /Le).

Using stellar population synthesis models, different
groups consistently find that the mean Y, in the near in-
frared is somewhat between ~0.4 and ~0.6 M, /L for galaxy
discs (McGaugh & Schombert 2014; Meidt et al. 2014;
Schombert & McGaugh 2014; Querejeta et al. 2015; Her-
rmann et al. 2016; Norris et al. 2016). In principle, values
as low as ~0.2 Mg /Ls can be derived if one substantially
changes the stellar initial mass function and/or the mod-
elling of asymptotic giant branch stars. These possibilities
cannot be ruled out, but seem unlikely.

Hydrodynamical models of gas flows in massive spirals
suggest that stellar discs are nearly maximal (Kranz et al.
2001, 2003; Weiner et al. 2001; Weiner 2004; Pérez et al.
2004; Zanmar Sanchez et al. 2008; Fragkoudi et al. 2017),
corresponding to Y, ~0.5—0.6 Mg /Le in the near infrared.
Moreover, these values of Y, provide sensible trends between
the gas fraction and the Hubble type, in line with density
wave theory (Lelli et al. 2016b).

The baryonic Tully-Fisher relation (BTFR) also pro-
vides important constrains on Y, (McGaugh & Schombert
2015; Lelli et al. 2016¢). Mean values of Y, < 0.4 Mg /Lo
would significantly increase the BTFR scatter and imply
BTFR slopes shallower than 3.5 (see Fig.1 in Lelli et al.
2016¢). Hence, EG would not be self-consistent with all
the observational constrains, since it predicts a BTFR with
nearly zero intrinsic scatter and slope of 4 (like MOND).

Intriguingly, the DiskMass survey measures the verti-
cal velocity dispersion of disc stars in face-on galaxies and
finds sub-maximal discs (Bershady et al. 2011; Martinsson
et al. 2013), corresponding to Ygc ~ 0.2 Mg /Lo at [3.6].
This method requires strong assumptions on the disc verti-
cal scale height: different assumptions would lead to nearly
maximal discs (see Aniyan et al. 2016).

Finally, in the EG framework, the “effective” interpola-
tion function f has an explicit dependence on R (see Eq. 2).
This implies that the RAR should display some intrinsic
scatter and the residuals should correlate with radius. The
current data, instead, are consistent with zero intrinsic scat-
ter and no residual dependences (Lelli et al. 2016a). Larger

galaxy samples and more precise observations would help to
better understand the intrinsic scatter around the RAR.

We conclude that the observed dynamics of disc galaxies
pose a significant challenge to EG. While the asymptotic
behaviour is correct in the point mass limit, problems appear
for galaxies of finite extent.
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