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1 Problem definition

An n-qubit quantum state is a positive semi-definite operator of unit trace in the complex Hilbert space
C2n

. A pure quantum state is a quantum state with a unique non-zero eigenvalue. A pure state is also
often represented by the unique unit eigenvector corresponding to the unique non-zero eigenvalue. In this
article the standard (ket, bra) notation is followed as is often used in quantum mechanics, in which |v〉
(called as ’ket v’) represents a column vector and 〈v| (called as ’bra v’) represents its conjugate transpose.
A classical n-bit state is simply a probability distribution on the set {0, 1}n.

Let {|0〉, |1〉} be the standard basis for C2. For simplicity of notation |0〉 ⊗ |0〉 are represented as |0〉|0〉 or
simply |00〉. Similarly |0〉〈0| represents |0〉⊗ 〈0|. An EPR pair is a special two-qubit quantum state defined
as |ψ〉 ∆= 1√

2
(|00〉+ |11〉). It is one of the four Bell states which form a basis for C4.

Suppose there are two spatially separated parties Alice and Bob and Alice wants to send an arbitrary n-
qubit quantum state ρ to Bob. Since classical communication is much more reliable, and possibly cheaper,
than quantum communication, it is desirable that this task be achieved by communicating just classical
bits. Such a procedure is referred to as teleportation.

Unfortunately, it is easy to argue that this is in fact not possible if arbitrary quantum states need to be
communicated faithfully. However Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters [2] presented the
following nice solution to it.

2 Key results

Alice and Bob are said to share an EPR pair if each hold one qubit of the pair. In this article a standard
notation is followed in which classical bits are called ’cbits’ and shared EPR pairs are called ’ebits’. Bennett
et al. showed the following:
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Theorem 2.1 Teleportation of an arbitrary n-qubit state can be achieved with 2n cbits and n ebits.

These shared EPR pairs are referred to as prior entanglement to the protocol since they are shared at the
beginning of the protocol (before Alice gets her input state) and are independent of Alice’s input state.
This solution is a good compromise since it is conceivable that Alice and Bob share several EPR pairs at the
beginning, when they are possibly together, in which case they do not require a quantum channel. Later
they can use these EPR pairs to transfer several quantum states when they are spatially separated.

Let us now see how Bennett el al. [2] achieve teleportation. Let us first note that in order to show
Theorem 2.1 it is enough to show that a single qubit, which is possibly a part of a larger state ρ can be
teleported, while preserving its entanglement with the rest of the qubits of ρ, using 2 cbits and 1 ebit. Let
us also note that the larger state ρ can now be assumed to be a pure state without loss of generality.

Theorem 2.2 Let |φ〉AB = a0|φ0〉AB|0〉A + a1|φ1〉AB|1〉A, where a0, a1 are complex numbers with |a0|2 +
|a1|2 = 1. Subscripts A,B (representing Alice and Bob respectively) on qubits signify their owner.

It is possible for Alice to send two classical bits to Bob such that at the end of the protocol the final state
is a0|φ0〉AB|0〉B + a1|φ1〉AB|1〉B.

Proof: For simplicity of notation, let us assume below that |φ0〉AB and |φ1〉AB do not exist. The proof is
easily modified when they do exist by tagging them along. Let an EPR pair |ψ〉AB = 1√

2
(|0〉A|0〉B+|1〉A|1〉B)

be shared between Alice and Bob. Let us refer to the qubit under concern that needs to be teleported as
the input qubit.

The combined starting state of all the qubits is

|θ0〉AB = |φ〉AB|ψ〉AB

= (a0|0〉A + a1|1〉A)(
1√
2
(|0〉A|0〉B + |1〉A|1〉B))

Let CNOT (controlled-not) gate be a two-qubit unitary operation described by the operator |00〉〈00| +
|01〉〈01| + |11〉〈10| + |10〉〈11|. Alice now performs a CNOT gate on the input qubit and her part of the
shared EPR pair. The resulting state is then,

|θ1〉AB =
a0√
2
|0〉A(|0〉A|0〉B + |1〉A|1〉B) +

a1√
2
|1〉A(|1〉A|0〉B + |0〉A|1〉B)

Let the Hadamard transform be a single qubit unitary operation with operator 1√
2
(|0〉+ |1〉)〈0|+ 1√

2
(|0〉 −

|1〉)〈1|. Alice next performs a Hadamard transform on her input qubit. The resulting state then is,

|θ2〉AB =
a0

2
(|0〉A + |1〉A)(|0〉A|0〉B + |1〉A|1〉B) +

a1

2
(|0〉A − |1〉A)(|1〉A|0〉B + |0〉A|1〉B)

=
1
2
(|00〉A(a0|0〉B + a1|1〉B) + |01〉A(a0|1〉B + a1|0〉B))

+
1
2
(|10〉A(a0|0〉B − a1|1〉B) + |11〉A(a0|1〉B − a1|0〉B))

Alice next measures the two qubits in her possession in the standard basis for C4 and sends the result of
the measurement to Bob.
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Let the four Pauli gates be the single qubit unitary operations: Identity: P00 = |0〉〈0| + |1〉〈1|, bit flip:
P01 = |1〉〈0|+|0〉〈1|, phase flip: P10 = |0〉〈0|−|1〉〈1| and bit flip together with phase flip: P11 = |1〉〈0|−|0〉〈1|.
On receiving the two bits c0c1 from Alice, Bob performs the Pauli gate Pc0c1 on his qubit. It is now easily
verified that the resulting state of the qubit with Bob would be a0|0〉B + a1|1〉B. The input qubit is
successfully teleported from Alice to Bob ! Please refer to Figure 1 for the overall protocol.

Figure 1: Teleportation protocol. H represent Hadamard transform and M represents measurement in the
standard basis for C4.

2.1 Super-dense coding

Super-dense coding [11] protocol is a dual to the teleportation protocol. In this Alice transmits 2 cbits of
information to Bob using 1 qubit of communication and 1 shared ebit. It is discussed more elaborately in
another article in the encyclopedia.

2.2 Lower bounds on resources

The above implementation of teleportation requires 2 cbits and 1 ebit for teleporting 1 qubit. It was
argued in [2] that these resource requirements are also independently optimal. That is 2 cbits need to
be communicated to teleport a qubit independent of how many ebits are used. Also 1 ebit is required to
teleport one qubit independent of how much (possibly two-way) communication is used.

2.3 Remote state preparation

Closely related to the problem of teleportation is the problem of Remote state preparation (RSP) introduced
by Lo [10]. In teleportation Alice is just given the state to be teleported in some input register and has
no other information about it. In contrast, in RSP, Alice knows a complete description of the input state
that needs to be teleported. Also in RSP, Alice is not required to maintain any correlation of the input
state with the other parts of a possibly larger state as is achieved in teleportation. The extra knowledge
that Alice possesses about the input state can be used to devise protocols for probabilistically exact RSP
with one cbit and one ebit per qubit asymptotically [3]. In a probabilistically exact RSP, Alice and Bob
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can abort the protocol with a small probability, however when they do not abort, the state produced with
Bob at the end of the protocol, is exactly the state that Alice intends to send.

2.4 Teleportation as a private quantum channel

The teleportation protocol that has been discussed in this article also satisfies an interesting privacy
property. That is if there was a third party, say Eve, having access to the communication channel between
Alice and Bob, then Eve learns nothing about the input state of Alice that she is teleporting to Bob. This
is because the distribution of the classical messages of Alice is always uniform, independent of her input
state. Such a channel is referred to as a Private quantum channel [6, 1, 8].

3 Applications

Apart from the main application of transporting quantum states over large distances using only classical
channel, the teleportation protocol finds other important uses as well. A generalization of this protocol
to implement unitary operations [7], is used in Fault tolerant computation in order to construct an infinite
class of fault tolerant gates in a uniform fashion. In another application, a form of teleportation called as
the error correcting teleportation, introduced by Knill [9], is used in devising quantum circuits that are
resistant to very high levels of noise.

4 Experimental results

Teleportation protocol has been experimentally realized in various different forms. To name a few, by
Boschi et al. [4] using optical techniques, by Bouwmeester et al. [5] using photon polarization, by Nielsen
et al. [12] using Nuclear magnetic resonance (NMR) and by Ursin et al. [13] using photons for long distance.

5 Cross references

Entry on Super-dense coding.
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