Aldebaran bulletin

Týdeník věnovaný aktualitám a novinkám z fyziky a astronomie.
Vydavatel: AGA (Aldebaran Group for Astrophysics)
Číslo 14 – vyšlo 12. dubna, ročník 13 (2015)
© Copyright Aldebaran Group for Astrophysics
Publikování nebo šíření obsahu je zakázáno.
ISSN: 1214-1674,
Email: bulletin@aldebaran.cz

Hledej

Souvisí signál detektoru DAMA/LIBRA s temnou hmotou?

Petr Kulhánek

Temná hmota se stala tématem mnoha fyzikálních diskuzí už od roku 1933, kdy na její existenci upozornil švýcarsko-americký fyzik Fritz Zwickey. Dnes tuto látku, která by měla tvořit 27 % celkové hmoty a energie ve vesmíru, hledá několik desítek laboratoří po celém světě. Nejčastěji se diskutuje o experimentu DAMA/LIBRA, kde scintilační detektory měří jakýsi signál již od roku 1996. Signál se v průběhu roku mění a tato roční variace je dávána do souvislosti s pohybem ZeměZemě – největší z planet zemského typu. Je jedinou planetou v celém vesmíru, o které víme, že na ní existuje život. Má dostatečně hustou atmosféru, dostatek kapalné vody v povrchových oceánech. Kolem Země obíhá jediný měsíc s vázanou rotací. Při pozorování Země z kosmu vidíme hlavně modrou barvu oceánů. 70 % povrchu Země je pokryto oceány, 30 % tvoří kontinenty. Země sestává z těchto vrstev: jádro, plášť, kůra, troposféra, stratosféra, mezosféra, termosféra. Plášť a kůra jsou odděleny tzv. Mohorovičiæovým rozhraním. Kůra se posouvá a „plave“ na polotekutém plášti. Teplota v centru Země je 5 100 °C, tlak 360 GPa. Magnetické pole Země má přibližně dipólový charakter, je deformováno slunečním větrem do typického tvaru. kolem SlunceSlunce – nám nejbližší hvězda, tzv. hvězda hlavní posloupnosti, která se nachází ve vzdálenosti 149,6×106 km od Země. Jde o žhavou plazmatickou kouli s průměrem 1,392×106 km, teplotou na povrchu 5 780 K, teplotou v centru přibližně 15×106 K a zářivým výkonem 3,846×1026 W. Zdrojem energie je jaderná syntéza, při které se za každou sekundu sloučí v jádru Slunce 700 milionů tun vodíku na hélium.. Země by měla v různých obdobích interagovat různě s oblakem wimpůWIMP – zkratka z Weakly Interacting Massive Particle, vážný kandidát na částice temné hmoty. Mělo by jít o reliktní superpartnery z období po Velkém třesku, kterým fyzikální zákony zabránily v následném rozpadu. Wimpy by měly s běžnou látkou interagovat gravitační a slabou interakcí. Jsou usilovně hledány v několika desítkách experimentů, tři z nich mají nenulový signál, jehož interpretace je zatím nejasná. (nejvážnější kandidát na částice temné hmoty), které jsou gravitačně vázány na naši Galaxii. Nejasnosti kolem původu tohoto signálu jsou ale značné a další kolo výměny názorů se rozběhlo v průběhu roku 2014.

Tunel pod horou Gran Sasso

Na boku tunelu pod horou Gran Sasso se ukrývá největší
podzemní laboratoř na světě. Foto James Pimm.

NLGS – Národní laboratoř Gran Sasso, byla vybudována ve střední Itálii na bocích tunelu, který spojuje města Teramo a L'Aquilla. Nachází se 1 400 metrů pod horou Gran Sasso a tvoří ji tři haly, každá o délce 100 metrů a výšce necelých 30 metrů. Je zde umístěno přibližně 20 funkčních experimentů. Celková plocha laboratoří, které byly otevřeny v roce 1987, je 17 300 m2. Laboratoře patří pod Národní ústav jaderné fyziky INFN (Instituto Nazionale di Fizica Nucleare). V podzemí jsou především detektory neutrin různého původu, kosmického záření a temné hmoty.

DAMA/LIBRA – experiment hledající částice temné hmoty (wimpy) v italské národní laboratoři pod horou Gran Sasso. Experiment poskytuje jakýsi signál již od roku 1996. Jde o scintilační NaI detektor. V první fázi (1996 až 2002) byl detektor provozován s 87 kilogramy scintilační látky pod názvem DAMA (DArk MAtter). Od roku 1998 byla v signálu rozpoznána relativně slabá roční variace. Ta by mohla být způsobena tím, jak Země v průběhu roku letí střídavě ve směru toku wimpů a proti toku wimpů vázaných gravitačně s Galaxií. Od roku 2003 pracuje detektor pod názvem Libra s 233 kg scintilační látky NaI/Th a v získávaném signálu jsou roční variace velmi výrazné.

Temná hmota – hmota ve vesmíru nebaryonové povahy, která není složena z kvarků. Temná hmota udržuje pohromadě svítící objekty velkých rozměrů, které díky ní v periferních oblastech obíhají rychleji, než odpovídá gravitačnímu zákonu aplikovanému na viditelnou hmotu. Podle posledních odhadů na základě pozorování existuje ve vesmíru 5 % baryonové hmoty, 27 % temné hmoty a 68 % temné energie. Existuje několik hypotetických částic, které jsou vhodnými kandidáty na částice temné hmoty, dosud však nebyly objeveny. Termín „temná hmota“ zavedl v roce 1933 Fritz Zwicky, když zjistil, že se členové Kupy galaxií ve Vlasech Bereniky pohybují v průměru rychleji, než by odpovídalo gravitačním účinkům viditelné látky. Existují také teorie, které se pokoušejí vysvětlit rotační křivky galaxií a pohyby galaxií v kupách jiným způsobem než temnou hmotou.

Vesmírné mimikry

Signál z detektoru DAMA/LIBRA byl diskutován už mnohokrát. Po přestavbě detektoru, která proběhla v letech 2002 až 2003 (množství NaI scintilátoru se zvýšilo z 87 na 233 kilogramů) byla roční variace již dobře patrná. Hlavním problémem ale je, že z mnoha dalších detektorů zaznamenají v posledních několika letech obdobný signál jen detektor CRESSTCRESST – Cryogenic Rare Event Search with Superconducting Thermometers, experiment hledající částice temné hmoty (zejména wimpy), který je umístěn pod italskou horou Gran Sasso. Skládá se ze 17 modulů obsahujících scintilační látku CaWO4, jenž pracují za extrémně nízké teploty 15 mK. Při této teplotě lze detekovat zahřátí modulu způsobené interakcí s wimpem. Detektor tedy pracuje jako mimořádně citlivý kalorimetr. Na detektoru CRESST bylo v roce 2011 nalezeno 67 signálů, které odpovídají interakci wimpů s detekční látkou a nelze je vysvětlit žádným jiným známým způsobem., který je také umístěn pod horou Gran Sasso, a dva americké experimenty (CoGeNTCoGeNT – Coherent Germanium Neutrino Technology, experiment hledající částice temné hmoty (zejména wimpy), který je provozován v americkém dole Soudan v Minnesotě. Aktivní látkou je mimořádně čistý krystal germania o hmotnosti 440 gramů, který je chlazen na teplotu kapalného dusíku. Kolem je stínění ze tří vrstev olova 210Pb, polyetylénu s borem, hliníku a 20 cm tlusté vrstvy plastu. Detektor začal sbírat data v prosinci 2009. V květnu 2011 obsahovala data z 442 dnů pozorování několik set záblesků s dobře patrnou roční periodicitou signálu. Jde o jeden ze tří detektorů s nenulovým signálem. a CDMS II) v dole Soudan. Značná část fyziků argumentuje tím, že signál nemusí pocházet z částic temné hmotyTemná hmota – hmota ve vesmíru nebaryonové povahy, která není složena z kvarků. Temná hmota udržuje pohromadě svítící objekty velkých rozměrů, které díky ní v periferních oblastech obíhají rychleji, než odpovídá gravitačnímu zákonu aplikovanému na viditelnou hmotu. Podle posledních odhadů na základě pozorování existuje ve vesmíru 5 % baryonové hmoty, 27 % temné hmoty a 68 % temné energie. Existuje několik hypotetických částic, které jsou vhodnými kandidáty na částice temné hmoty, dosud však nebyly objeveny. Termín „temná hmota“ zavedl v roce 1933 Fritz Zwicky, když zjistil, že se členové Kupy galaxií ve Vlasech Bereniky pohybují v průměru rychleji, než by odpovídalo gravitačním účinkům viditelné látky. Existují také teorie, které se pokoušejí vysvětlit rotační křivky galaxií a pohyby galaxií v kupách jiným způsobem než temnou hmotou., ale může jít o signál pozadí, tedy ze stínění experimentu a okolních hornin. Argumenty tohoto druhu byly zformulovány více vědci, například izraelsko-americkým částicovým fyzikem Kfirem Blumem, který upozorňuje na to, že obdobnou roční variaci může dát tok mionůMion – těžký elektron, hmotnost má 207 me. Střední doba života je přibližně 2×10−6 s. Těžký elektron se rozpadá na stabilní elektron, elektronové antineutrino a mionové neutrino. Mion se vyskytuje v sekundárních sprškách z kosmického záření. Mion byl objeven C. Andersonem v kosmickém záření za pomoci mlžné komory v roce 1936., který je v průběhu roku silně ovlivněn měnící se teplotou stratosféryStratosféra – vrstva atmosféry nad troposférou. Sahá přibližně do 50 km. Součástí stratosféry je ozónová vrstva, která pohlcuje škodlivé ultrafialové záření přicházející ze Slunce. Ve stratosféře nedochází k turbulentnímu proudění, neboť teplota vzduchu s výškou roste (růst způsobuje pohlcování UV záření).. Miony se rozptylují v okolních horninách a ve stínících vrstvách detektoru a vytvářejí neutrony, které může detektor snadno zachytit. Takový model sice dá správnou roční variaci signálu, ale odlišnou fázi. Experimenty na DAMA/LIBRA mají maximum signálu na konci května, tok mionů z kosmického záření ovlivněný stratosférou dává maximum 21. června, což miony jako jediný zdroj signálu vylučuje.

V roce 2014 navrhl John Davis z Durhamské univerzity ve Velké Británii (nyní pracuje na Pařížské univerzitě), že by signál z detektoru DAMA/LIBRA mohl být kombinací jak mionovéhoMion – těžký elektron, hmotnost má 207 me. Střední doba života je přibližně 2×10−6 s. Těžký elektron se rozpadá na stabilní elektron, elektronové antineutrino a mionové neutrino. Mion se vyskytuje v sekundárních sprškách z kosmického záření. Mion byl objeven C. Andersonem v kosmickém záření za pomoci mlžné komory v roce 1936.  signálu navrhovaného Blumem, tak signálu ze slunečních neutrinNeutrina – částice, které nemají elektrický náboj, neinteragují ani silně ani elektromagneticky, a proto látkou většinou procházejí. Spolu s elektrony patří do rodiny tzv. leptonů. Neutrina známe ve třech provedeních – elektronová, mionová a tauonová. Alespoň jedno z neutrin má nenulovou klidovou hmotnost, a proto dochází k tzv. oscilacím neutrin, samovolné přeměně mezi jednotlivými typy., která mohou opět vytvořit v okolí přístroje detekovatelné neutrony. Neutrinový signál by měl mít maximum kolem 4. ledna, kdy je Slunce nejblíže Zemi a kombinace obou signálů (mionového i neutrinového) dává stejný fázový průběh, jako je měřen na DAMA/LIBRA. Je tedy problém původu signálu měřeného detektorem DAMA/LIBRA definitivně vyřešen?

Rozhodně ne, na počátku roku 2015 provedli Vitaly Kudryavtsev a Joel Klinger na anglické Univerzitě v Sheffieldu podrobné numerické simulace, ve kterých vzali v úvahu interakci mionů i neutrin v horninách tvořících masiv Gran Sasso. Zahrnuli detailně profil hory a samozřejmě i stínění detektoru. Signál vznikajících neutronů se sice tvarem podobá záznamu z detektoru, ale je o několik řádů slabší, a tedy pod hranicí detekce ve stávajícím scintilátoru.

DAMA/LIBRA, experiment a data

DAMA/LIBRA. V horní části je uspořádání experimentu před rekonstrukcí (nalevo) a po ní (napravo). Jednotlivé bloky mají na obou stranách fotonásobiče zachytávající záblesky scintilátoru. Naměřená data jsou v dolní části. Výrazná roční variace je dobře patrná v datech získaných od roku 2003 (po rekonstrukci). Zdroj: NLGSNLGS – Národní laboratoř Gran Sasso, byla vybudována ve střední Itálii na bocích tunelu, který spojuje města Teramo a L'Aquilla. Nachází se 1 400 metrů pod horou Gran Sasso a tvoří ji tři haly, každá o délce 100 metrů a výšce necelých 30 metrů. Je zde umístěno přibližně 20 funkčních experimentů. Celková plocha laboratoří, které byly otevřeny v roce 1987, je 17 300 m2. Laboratoře patří pod Národní ústav jaderné fyziky INFN (Instituto Nazionale di Fizica Nucleare). V podzemí jsou především detektory neutrin různého původu, kosmického záření a temné hmoty..

Závěr

Situace tedy i nadále zůstává nejasná. Experimenty DAMA/LIBRADAMA/LIBRA – experiment hledající částice temné hmoty (wimpy) v italské národní laboratoři pod horou Gran Sasso. Experiment poskytuje jakýsi signál již od roku 1996. Jde o scintilační NaI detektor. V první fázi (1996 až 2002) byl detektor provozován s 87 kilogramy scintilační látky pod názvem DAMA (DArk MAtter). Od roku 1998 byla v signálu rozpoznána relativně slabá roční variace. Ta by mohla být způsobena tím, jak Země v průběhu roku letí střídavě ve směru toku wimpů a proti toku wimpů vázaných gravitačně s Galaxií. Od roku 2003 pracuje detektor pod názvem Libra s 233 kg scintilační látky NaI/Th a v získávaném signálu jsou roční variace velmi výrazné., CRESSTCRESST – Cryogenic Rare Event Search with Superconducting Thermometers, experiment hledající částice temné hmoty (zejména wimpy), který je umístěn pod italskou horou Gran Sasso. Skládá se ze 17 modulů obsahujících scintilační látku CaWO4, jenž pracují za extrémně nízké teploty 15 mK. Při této teplotě lze detekovat zahřátí modulu způsobené interakcí s wimpem. Detektor tedy pracuje jako mimořádně citlivý kalorimetr. Na detektoru CRESST bylo v roce 2011 nalezeno 67 signálů, které odpovídají interakci wimpů s detekční látkou a nelze je vysvětlit žádným jiným známým způsobem.CoGeNTCoGeNT – Coherent Germanium Neutrino Technology, experiment hledající částice temné hmoty (zejména wimpy), který je provozován v americkém dole Soudan v Minnesotě. Aktivní látkou je mimořádně čistý krystal germania o hmotnosti 440 gramů, který je chlazen na teplotu kapalného dusíku. Kolem je stínění ze tří vrstev olova 210Pb, polyetylénu s borem, hliníku a 20 cm tlusté vrstvy plastu. Detektor začal sbírat data v prosinci 2009. V květnu 2011 obsahovala data z 442 dnů pozorování několik set záblesků s dobře patrnou roční periodicitou signálu. Jde o jeden ze tří detektorů s nenulovým signálem. detekují jakýsi signál, jehož původ je nejasný. Pokud by tyto signály nebyly způsobeny procesy v okolí detektorů (a nemusí jít jen o neutrony vznikající interakcí vesmírných mionů a neutrin), vychází hmotnost hledaných wimpůWIMP – zkratka z Weakly Interacting Massive Particle, vážný kandidát na částice temné hmoty. Mělo by jít o reliktní superpartnery z období po Velkém třesku, kterým fyzikální zákony zabránily v následném rozpadu. Wimpy by měly s běžnou látkou interagovat gravitační a slabou interakcí. Jsou usilovně hledány v několika desítkách experimentů, tři z nich mají nenulový signál, jehož interpretace je zatím nejasná. pod hranicí 10 GeVElektronvolt – jednotka energie. Jde o energii, kterou získá elektron urychlením v potenciálovém rozdílu jeden volt, 1 eV = 1,6×10−19 J. V jaderné fyzice se používají spíše větší násobky této jednotky, kiloelektronvolt keV (103 eV), megaelektronvolt MeV (106 eV), gigaelektronvolt GeV (109 eV), teraelektronvolt TeV (1012 eV) nebo petaelektronvolt PeV (1015 eV). V těchto jednotkách se také vyjadřuje hmotnost (E=mc2) a teplota (E=kBT). Jeden elektronvolt odpovídá teplotě přibližně 11 600 K.. Wimpy by měly být samy sobě antičásticemi a jejich anihilace by měla dávat rentgenový signál zachytitelný takovými detektory, jako je například FermiFermi – americká gama observatoř, která se v roce 2008 stala následovníkem slavné gama observatoře Compton. Rozsah detekovaného záření: 10 až 300 GeV. Původně se tato observatoř jmenovala GLAST (Gamma-ray Large Area Space Telescope), v srpnu 2008 byla přejmenována na Fermi Gamma-ray Space Telescope (FGST) podle významného italského kvantového fyzika. Observatoř je na nízké oběžné dráze s perigeem 536 km a apogeem 553 km. Na stavbě observatoře se kromě NASA také podílely CEA, DLR, ASI, JAXA a SNSB. Mise byla několikrát prodloužena, observatoř je stále funkční (2024).. Jenže Fermi žádný obdobný signál nedetekuje. Jistou nadějí byl nadbytek pozitronů zaznamenaný na Mezinárodní kosmické staniciISS – International Space Station, mezinárodní vesmírná stanice. Od roku 1993 je společným projektem americké NASA, Ruska, Kanady, evropských států sdružených v kosmické agentuře ESA a Japonska. První modul byl vynesen v roce 1998, první posádka na stanici byla v roce 2000. V roce 2008 byl k ISS připojen evropský výzkumný modul Columbus. V roce 2011 byl instalován víceúčelový americký modul Leonardo a v roce 2021 zatím poslední ruský modul Nauka. V roce 2011 letěl k ISS poslední raketoplán. Od té doby zajišťují styk se stanicí lety ruských lodí Sojuz, v poslední době se přidaly lodi Crew Dragon soukromé společnosti SpaceX. Na ISS operuje stálá posádka. detektorem AMS 2 (viz AB 14/2013), který by mohl souviset s anihilací wimpů. Jenže data ze sondy PlanckPlanck – mikrovlnná observatoř evropské kosmické agentury ESA, která byla vynesena do vesmíru 14. května 2009. Byla určena k výzkumu fluktuací reliktního záření a monitorování vesmíru v mikrovlnné oblasti. Měla úhlovou rozlišovací schopnost 5′ a teplotní citlivost 2 μK. Oblohu snímkovala v devíti frekvenčních pásmech od 30 do 857 GHz (0,2 až 10 mm). Zrcadlo sondy mělo rozměry 1,9×1,5 m. Teplotu vysokofrekvenční části ohniska se podařilo po dobu dvou let udržet na extrémně nízké hodnotě 0,1 K. Činnost sondy byla ukončena v říjnu 2013. zveřejněná 6. února 2015 takovou interpretaci vylučují, a tak se zdá, že nadbytečné pozitrony pocházejí z okolí blízkých pulzarů. Jak je vidět, otázek a nejasností je celá řada a na finální řešení si budeme muset ještě nějakou dobu počkat. Neustále tedy platí, že temnou hmotu dobře pozorujeme z jejích gravitačních projevů, ale přímá detekce se zatím nedaří.

CoGeNT a CDMS-II

Výsledky amerických experimentů CoGeNT a CDMS-II (umístěných v dole Soudan) za předpokladu, že jde o signál wimpů. Modrá barva pokrývá oblast se statistickou významnostíStatistická významnost – popisuje výsledek testování statistické hypotézy. V částicové fyzice se statistická významnost vyjadřuje v násobcích směrodatné odchylky σ normálního rozdělení. Za objev je považována statistická významnost vyšší než 5σ, kdy je pravděpodobnost, že je výsledek náhodnou fluktuací, 1:3,5 milionu.  68 %, fialová 90 %. Je patrné, že hmotnost wimpu vychází slabě pod 10 GeV. Zdroj: Fermilab.

Odkazy

Valid HTML 5Valid CSS

Aldebaran Homepage