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Abstract

The Strukov phenomenological model used to describe their mem-
ristor has been applied to memristors in general. Here we show that
there is a critical error in the derivation of this model, specifically that
the equation given for the speed of the boundary (between doped and
undoped titanium dioxide) is incorrect. This leaves the derived expres-
sion for the memristance unsupported. In this paper we derive a new
memristor theory based on magnetostatics and demonstrate its appli-
cation to the Strukov (or HP), solution-processed TiO2 and PEO-PANI
(or organic) memristors. The magnetic flux expected from Chua’s con-
stitutive definition of the memristor is identified as the magnetic flux
associated with the flow of oxygen vacancies within the material. The
memristance as determined by the model is shown to be dependent on
three spatial dimensions. This work allows us to combine the missing
memristor magnetic flux and Chua’s constitutive memristor equations
with real-world device measurables for the first time.

1 Introduction

Memristors are, often nanoscale, electronic components that act as resistors
with a memory. This combination of functionality and scalability has led
to the suggestion that memristors are a potential route to increasing com-
putational complexity in terms of Moore’s Law [1]. Memristor theory has
been successfully applied to describe the operation of synapses [2] and other
components of neurons [3,4], as well as the processes of learning in snails [5]
and amoeba [6]. Therefore, memristors may become vital components in
attempts to create brain-like (neuromorphic) computers that are capable of
learning (see for example [7] and [8]) and possibly higher-level functions,
such as intelligence.

There are four fundamental circuit properties which describe a circuit’s
operation: the electrical potential difference, V , the electronic current, I,
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the magnetic flux, ϕ and the charge, q. Three pairs of relationships define
the operation of the first three fundamental circuit elements: the resistor
(R = V/I); the capacitor (C = q/V ); the inductor (I = ϕ/V ). A fourth was
added in 1971, when Chua predicted the existence of a device that would
relate q to ϕ, the memristor [9]. Because I and V are time differentials of
q and ϕ, memristors produce distinctive non-linear I-V curves that have
three important features [10]: (1) hysteresis (memory); (2) zero current at
zero voltage; and (3) A.C. frequency dependence (the size of the hysteresis
is related to frequency and it shrinks to nothing above critical frequency).
The memristor concept was generalised by [2] to memristive systems. The
memristor has only one state variable whereas a memristive system can
be a function of more, and memristive systems have been used to model
systems from across the sciences from an alternative circuit model of the
neuron [2, 3, 11] to thermistors [12].

Between 1971 and 2008, no one who had read Chua’s work was able
to make a memristor and the idea languished in the drawer of theoretical
curiosities. However, over this time period, many experimentalists had re-
ported ‘anomalous’ I-V curves with variations on a pinched hysteresis loop,
such as the first report of a memristor I-V curve in TiO2 in 1968 [13], the cre-
ation of the PEO-PANI organic based memristive system [14,15] and many
others, mostly Resistive Random Access Memory (ReRAM) devices [16–18].
Strukov et al were the first to finally unite the idea of the memristor with a
practical example, by describing a working memristor [19] complete with a
phenomenological model for its operation and references to Chua’s theoret-
ical work.

The Strukov memristor [19] (also often called the H.P. memristor after
the owners of the work) consists of a layer of titanium dioxide of thickness
D sandwiched between two platinum electrodes of width E and F as shown
in figure 1. The titanium dioxide layer contains lattice defects caused by
missing oxygen atoms; these oxygen vacancies act as n-type dopants and
the distance they have drifted through the memristor is given by w, where
0 < w < D. The resistivity of the stoichiometric, un-doped TiO2 is higher
than that of doped, non-stoichiometric TiO(2−x). Interconversion between
the doped and un-doped forms, caused by the drift of oxygen vacancies,
changes the total resistance, R, of the memristor and produces the pinched
hysteresis loop in the I-V curve.

However, the Strukov model lacks a demonstrable magnetic flux term [19]
and the magnetic flux of a memristor has not been experimentally measured.
As Chua’s memristor definition includes magnetic flux, this lack has led to
questions as to whether the Strukov memristor is a Chua memristor [20]. In
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response, it has been suggested that the magnetic flux may be a theoretical
construct and not related to a material property [16] and/or that it is the
non-linear I-V relationship which defines the memristor [19], a definition
which widens the field of memristors to include, for example, all ReRAM
devices [16]. If there is a magnetic flux associated with the material system,
we would be able to better apply Chua’s theory to real systems. Which
would allow us to understand the physics in a deeper way and, by creating a
set of equations that relate device properties with memristive function, use
this knowledge to design memristors applicable to our needs.

It will be shown here that there is a fundamental error in the deriva-
tion of Strukov’s phenomenological model and that an alternative deriva-
tion of a memristor model for their device leads to a more coherent model of
real-world memristor devices and a consolidating of Chua’s definition with
Strukov’s device. As Strukov et al’s model has been applied to other devices,
and as many memristor devices are based on similar chemistry (e.g. other
vacancy transporting semi-conductor memristors), we will demonstrate that
the model in this paper also applies to other devices and anticipate that it
can be extended to a wide range of memristor device.

This paper is structured in the following manner, first we will describe
Strukov’s system and then demonstrate where the error in the derivation
arises and how this has led to erroneous ideas about the dimensionality and
scale of memristors. We then formulate a different model based on standard
magnetostatics. We then illustrate that it can satisfy Chua’s theoretical
formulation and includes magnetic flux. We will then describe how the
model in general can be applied to other memristor systems.

2 The Strukov Model of the Strukov Memristor

2.1 Chua’s Definition of the Memristor

There are four circuit measurables: V , I, q and ϕ. The definitions

q(t) ≡
∫ t

−∞
I(τ)dτ (1)

and

ϕ(t) ≡
∫ t

−∞
V (τ)dτ (2)

relate charge to current and voltage to flux. They also widen the description
of charge from a quantity stored by a capacitor to total amount of charge
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that has passed through the circuit. Similarly the flux is time integral of the
voltage applied over time rather than the quantity stored by an inductor.
Thus these quantities are relevant to circuits without such devices in them.

Between four measurables, there are six pairs of interactions. Two are
given by the definitions above, another three are the constitutive relations
of the resistor, inductor and capacitor described in the introduction. Chua’s
ground-breaking contribution was to realize that there was a constitutive
relationship missing, one which would define a device that relates charge
to flux. He realised that this device would act in a passive, (i.e. non-
storing) manner (like a resistor) and would give rise to a pinched hysteresis
loop, and this hysteresis suggested the device would have memory, hence
the name memristor, a contraction of memory-resistor. This constitutive
relationship [9] he gave as:

M(q) ≡ dϕ(q)

dq
(3)

where M is the memristance, a time-varying instantaneous resistance, which
relates voltage, V , to current, I, in the following manner

V (t) = M(q(t))I(t) . (4)

The time dependence of the memristance demonstrates that there will be a
time or frequency based effect on the response of the device. If the voltage
is varied too quickly for the device to respond the memristive behaviour
collapses to ohmic conduction. Note that the time-variance is entirely due
to the fact that q is a function of t, the memristance will not change with time
if q does not change. These equations are for a charge controlled memristor,
it is trivial to work out those for a flux controlled device. The equations
reproduced in these sections are the definitions given in Chua’s original
theoretical work [9] (the description is expanded to memristive systems in
later works [2]), Chua has never given a description of what the function M
is or where it arises from.

2.2 Strukov’s Derivation of the Strukov Memristor Model.

At the time of publication, Strukov’s ground-breaking paper was the first
example of a working memristor which excited much interest and founded
a novel field and reignited interest in existing fields, such as ReRAM. Since
then, as it was discovered that other memristor systems had been fabricated,
the impact of that paper on memristor theory has been the usefulness of the
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Figure 1: The Strukov memristor. The shaded area is doped low-resistance
titanium dioxide, the unshaded area is stoichiometric high-resistance tita-
nium dioxide. Vacancy, V+, movement through the material is shown by the
arrow. w marks the boundary between the two forms of titanium dioxide.
The limits of the titanium dioxide layer in the y and z directions are E and
F . As the vacancies move to the right along the x axis, the magnetic B
field associated with them curls around in an anti-clockwise direction (not
shown) and thus the surfaces that cross magnetic field lines are those in the
x-y and x-z planes.

phenomenological model described within it. By providing a description
for M , theorists were able to model memristor devices and make progress in
memristor science, even whilst many of them did not have real devices to test
their ideas on. The model was found to fit other memristor systems [21] and
the modelling of the boundary has been improved (i.e. by using windowing
functions and more realistic models for oxygen ion transport). However,
there were two errors in the derivation, which has led to confusion over
the magnetic flux and the claim (now experimentally proved false) that
memristors had to be nanoscale [19]. In this section we shall go through the
derivation from paper [19] in detail to highlight these issues and demonstrate
why the derivation is incorrect.

2.2.1 The Details of Strukov’s Derivation

To deal with the simplest possible case, they make two assumptions [19]:
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1. ‘ohmic electronic conductance’, i.e. V (t) = R(t)I(t), R may vary with
time but at each instant in time, the current is wholly determined by
the voltage and resistance;

2. ‘linear ionic drift in a uniform field with average ion mobility µv’.

Because the TiO2 can inter-convert to TiO(2−x), with no volume change,
the device can be modelled as two space-conserving resistors, one with resis-
tance Roff and one with resistance Ron. The resistors are space-conserving
because TiO(2−x) is made from the TiO2 and vice-versa, thus they have
made a zeroth assumption that matter is not created or destroyed in this
system (not stated in the paper). Strukov et al started with the space-
conserving variable resistors and gave the following formula for how the
resistance changes as equation 5 in [19]

V (t) =

(
Ron

w(t)

D
+Roff

(
1− w(t)

D

))
I(t), (5)

where w(t)
D serves to give the fraction of the material which is the doped

resistor and
(

1− w(t)
D

)
is the undoped resistor. They are using a simple

model of two variable resistor with a runner between (see figure 2A in [19]),
mathematically it is a proportional mixing of two resistors, which gives rise
to a continuum change of resistance.

From equation 5 and assumption 1 (ohmic conduction) we can write an
expression for the total resistance in the system, R(t), as:

R(t) = Ron
w(t)

D
+Roff

(
1− w(t)

D

)
. (6)

Strukov et al concern themselves with the speed of the moving boundary,
dw(t)
dt . This is modelled in relation to the average drift velocity of the oxygen

dopants, sv. This arises from assumption 2: if we have linear ionic drift,
then the ions move (on average) at the same speed across the entire device.
Therefore because the boundary is the measure of the furthest reach of those
ions, the boundary must move at the drift speed (because if the travelling
front of ions moved (on average) faster or slower than the bulk average
it would contradict the assertion that we have linear ionic drift). As the
average drift speed is the scalar part of the average ionic drift velocity, we
have

dw(t)

dt
= |sv| . (7)
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Assumption 2 also states that the ions are drifting in a uniform electric
field L with an average ionic mobility µv, which gives us (from writing out
assumption 2, which is a definition of drift velocity):

sv = µvL . (8)

A uniform electric field is given by the voltage across the titanium dioxide
divided by the thickness of that material:

L =
V

D
. (9)

So, they set dw(t)
dt = |sv| and substitute equation 9 into 8 to get

dw(t)

dt
= µv

V (t)

D
, (10)

which is not explicitly given in the paper [19] but is described in words in
the derivation and arises naturally from the assumptions.

The authors actually report (as equation 6 in [19])

dw(t)

dt
= µv

IRon

D
, (11)

where assumption 1 (ohmic electronic conductance) has been used to sub-
stitute for V .

They then integrate both sides∫
dw(t)

dt
dt =

∫
µv
I(t)Ron

D
dt , (12)

and make use of the definition of charge, given in equation 1 to get

w(t) = µv
Ronq(t)

D
, (13)

which is equation 7 in [19].
Equation 13 is then substituted into equation 5 to give

V (t) =

(
R2

onµvq(t)

D2
+Roff −

RoffRonµvq(t)

D2

)
I(t) . (14)

They compare equation 14 to Chua’s constitutive relation given in equa-
tion 4 and conclude that R(t) (the terms in the brackets) is the memristance,
M(q), where the time dependence of M arises entirely from q(t).
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They state that:
Ron � Roff , (15)

which as Ron ∼ 1 and Roff ∼ 160 in their system, is not unreasonable.
We shall thus take equation 15 as assumption 3. Therefore, as Ron is over
100 times smaller than Roff they drop the R2

on term (to make the equation
simpler). Thus they report

M(q) = Roff

(
1− µvRonq(t)

D2

)
. (16)

2.2.2 Consequences of the Strukov derivation

The derivation in [19] has been assumed to be correct and as a result of
equation 16 several claims were made that have led to misunderstandings
about memristors.

There is an error in the derivation associated with the system set-up,
which is not a fatal flaw but an unrecognised assumption. Equation 6 is
theoretically one-dimensional as it is dependent only on w. This arises from
treating the memristor as two-space conserving resistors with a slider w to
mix the relative amount of Roff and Ron. The model is also spatially one-
dimensional because the amount of 3-D memristor material in the doped
and un-doped state is approximated by only the proportion of the thickness
D in that state. This is not a bad assumption given that (because we assume
that the volume occupied by the memristive material does not change as a
result of doping) the length and width of memristive material is the same
for the doped and undoped memristive material. An alternative formulation
would be to replace Ron and Roff terms with the resistivity of the two types
of material (if we know it), and the volume that material occupies using the
definition of resistivity.

From examination of Strukov’s expression for M , the claim was made
that memristance depends only on D [19], meaning that the model is spa-
tially one-dimensional. However, M depends only on D and not any other
dimensions of the device because no other spatial dimensions were included
in the model at the start (for simplicity). Thus to conclude that M de-
pends only on D is to make the error of drawing a conclusion that was an
un-expressed assumption.

This error is relatively minor (indeed, no one other than the author of
this paper seems to have noticed or remarked on it, see [22]) but the com-
pound error associated with 1

D2 has had an effect. Strukov et al suggested
that for appreciable memristance to be measured, D must be small, ideally
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nanoscale, to make 1
D2 (and thus the difference between the fully switched

on and fully switched off resistances) large. Thus it was suggested that
memristors could not be fabricated until nanoscale (D ∼ 10−9) film technol-
ogy existed. There have since been several experiments that contradict this
viewpoint [17,23,24]. However, the only reason that the memristance didn’t
depend on E or F was because they were purposely not included at the
start. (This realisation does suggest the intriguing possibility of designing
memristors with different properties based on their shape).

Another historical problem with equation 16 is the question of where
the magnetic flux is. Because Chua’s definition (see equation 3) included
magnetic flux [9] it was expected that there should be an equation that
related Strukov’s memristance to a magnetic flux. Indeed, the authors state
that the “magentic field does not play an explicit role in the mechanism of
memristance” [19]. They concluded that memristance was just a theoretical
concept and it was only the non-linear relation between the integrals of
voltage and current that defined a memristor. Perhaps the lack of magnetic
flux (and field) was an indication that the derivation was incorrect. As it

happens, the quantity D2

µv
has the units of magnetic flux, but this quantity

is not a magnetic flux. (Interestingly, if it were, the value of this quantity
for the Strukov memristor would be so far outside of an expected value (see
section 4.3) that it should have suggested that this equation was incorrect).

We will now go on to demonstrate that there is a critical error in the
Strukov derivation which unfortunately requires that we forgo the use of this
formulation of memristance.

2.3 Mathematical Disproof of the Strukov Derivation

The problem with the derivation arises from the substitution between 10
and 11 where IR is substituted for V .

2.3.1 Assumptions

For simplicity, we list the assumptions used by Strukov et al below:

• 0. Matter is conserved in this system

• 1. The system is instantaneously ohmic: V (t) = R(t)I(t)

• 2. The ions undergo linear ionic transport in a uniform field with an
average ion mobility of µv

• 3. Ron � Roff
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We also have other physical facts about the system, such as the value
of the electron mobility, µe, that w varies between 0 and D, that all the
resistances are more than zero, that D is non-zero and so on.

2.3.2 Problems with the resistance

Theorem 2.1. The substitution of Ron into equation 10 that leads to equa-
tion 11 is incorrect

Proof. Assumption 1 is V (t) = R(t)I(t) where R(t) is the total resistance
and I(t) is the total current. Therefore, when substituting for V in equa-
tion 11, the resulting equation should be

dw(t)

dt
= µv

IR

D
. (17)

Theorem 2.2. If equation 11 were correct, it leads to either a description
of a non-memristor or a contradiction

Proof. For equation 11 to be correct,

R = Ron ⇒ Ron
w(t)

D
+Roff

(
1− w(t)

D

)
= Ron , (18)

from substituting for R.
There are two ways this can be possible.
The first way is if w(t) = D ∀ t, this implies that w can not be dependent

on t i.e. it does not change,

∴
dw(t)

dt
= 0 (19)

which, because
µv, R,D 6= 0⇒ I(t) = 0 ∀ t. (20)

Equation 19 describes the system when it is stuck at the minimum re-
sistance, which is equivalent to a resistor of resistance Ron and no longer
fits the definition of the memristor. Equation 20 describes an un-powered
device (that can never be turned on), thus it is also not a memristor.

The second way for R = Ron is if Roff = Ron, then

R(t) = Ron
w(t)

D
+Ron

(
1− w(t)

D

)
, (21)
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which if we rewrite using x = w(t)
D

R(t) = xRon + (1− x)Ron , (22)

we know that 0 ≤ w ≤ D ⇒ 0 ≤ x ≤ 1, thus we see that R(t) = Ron. But
this involved setting Roff to Ron which contradicts assumption 3:

Ron = Roff ⊥ Ron � Roff . (23)

2.3.3 Problems with the current

Theorem 2.3. The substitution of V in equation 10 by IR is an incorrect
expression for dw(t)

dt

Proof. The zeroth assumption says that matter can not be created or de-
stroyed in this system, thus we can derive Kirchhoff’s laws. From Kirchhoff’s
laws, the total measured current (I) is a sum of all all the currents in the
system, specifically the electronic current ie and the ionic vacancy current
iv:

I(t) = iv + ie . (24)

Thus the right hand side of equation 11 (now we are ignoring the issues with
the resistance) should be

µv
Ron

D
(iv + ie) , (25)

which is actually a measure of the average drift velocity of all the charge
carriers in the system, s, i.e. µv

Ron
D (iv + ie) = s.

Thus

µv
Ron

D
(iv + ie) = s ⊥ µv

V

D
= sv, (26)

unless s = sv.
From equation 8, the average drift velocity of all charge carriers can be

expressed as

s =
[nvµv
N

+
neµe
N

]
L , (27)

where nv is the number of oxygen vacancy charge carriers in the system, ne
is the number of electron charge carriers in the system and N is the total
number of charge carriers given by N = nv + ne.

s = sv iff
nvµv
N

+
neµe
N

= µv (28)

which can happen in two cases:
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1. if ne = 0⇒ N = nv ⇒ nvµv
nv

= µv

2. if µe = 0⇒ e are not charge carriers, ⇒ N = nv .

Case 1 suggests that the memristor device is ionic rather than mixed
ionic and electronic. This is not mathematically impossible, but does not fit
with the physics of the system we are trying to model. Case 2 contradicts
the known values 1 of the mobilities: µe = 0 ⊥ µe > µv and µe, µv ≮ 0.

2.3.4 Problems with the Distance

It is possible that Strukov et al were attempting to describe only the part of
the device that was doped (the ‘on’ part). In which case, they might have
used Von in equation 10 (it was not included in the derivation), where Von

refers to the potential dropped between x = 0 and x = w. This voltage
is not the voltage measured in the circuit, nor is it possible to measure it
in a real memristor in the set-up described in [19] (or in our experimental
memristor measurement set-ups) however, it could conceptually exist in the
equivalent variable resistor system shown in the 4th subfigure of figure 2a
in [19].

Theorem 2.4. Describing Only the ‘On’ Part of the Device Leads to Re-
cursion

Proof. If we are describing only the ‘on’ part of the device then equation 8
should have been

dw(t)

dt
= µvLon , (29)

where Lon is the electric field over 0 ≤ x ≤ w.
Thus, equation 10 should have been

dw(t)

dt
= µv

Von(t)

w(t)
, (30)

where w(t) is now the distance because this is the limit of the ‘on’ part of
the device.

Taking the time integral of equation 30 gives w as a function of w i.e.
w = f(w) (the actual integral can not be given here as we do not have
an espression for how w varies with time because this is what we were
attempting to derive!) As in theorem 2.5, this is recursive.

1µe in this system is around 1×10−6cm−2V −1s−1 [25], µv is around 1 ×
10−10cm−2V −1s−1 [19]
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This approach is equivalent to taking the limit case of R ∼ Ron. As-
sumption 3, Roff � Ron, implies that R ∼ Roff if we were to approximate
it. And R ∼ Ron ⊥ R ∼ Roff as in Theorem 2.2.

This concludes our disproof by exhaustion of the correctness of equa-
tion 11. To demonstrate that the following equations are unsupported, we
need to prove that if we replace Ron with R we cannot derrive the expressions
for memristance 16.

2.3.5 The Corrected Version of Equation 11 can not be Used to
Derrive the Expression for Memristance in Equation ??

Theorem 2.5. Using V = IR to substitute for V in equation 10 leads to
recursion.

Proof. If we substitute R into equation 11 in place of Ron, we would get
w(t) = µv

R
Dq(t) for equation 14, which implies that w(R).

Equation 6 shows that R(w).
Putting equation 13 into 6 is equivalent to R(w(R)). As R(w) we could

write R(w(R(w))). As w(R) we can write R(w(R(w(R)))). This can be
expanded indefinitely, showing that the statement is recursive (and not a
helpful step in attempting to calculate the memristance) and we can not
solve this.

Thus, we have shown that we can not proceed further with the derriva-
tion and therefore that equation 16 can not been derrived from the steps
in [19].

2.3.6 Consequences for the Strukov Derivation

There is a critical error in the derivation. The substitution of IR for V in
deriving equation 11 is incorrect (theorem 2.1, both for the choice of the
resistance (theorem 2.2) and current (theorem 2.3) and leads to incorrect
device descriptions or contradictions (theorems 2.2 and 2.3). Doing the cor-
rect substitution for R leads to recursion (theorem 2.5) making it impossible
to derive Strukov’s expression of memristance and leaving this expression
entirely unsupported. As a result, equations 11, 13 and 16 have to be thrown
away.

These mathematical results are well supported by the chemistry of the
system. The voltage is driving the motion of both charge carriers in the sys-
tem and it is included in equation 10 performing this function, but applied to
only the vacancies (as the voltage experienced by both charge carriers is the
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same). The voltage can also be calculated from total resistance and current,
but the use of total current is not appropriate in an equation specifically
and only about the vacancies. Perhaps the confusion arises from the use of
the word ‘vacancy’ in the field. The vacancies that alter the resistance are
oxygen ion vacancies (oxygen ions are drifting in the opposite direction to
the vacancy current), they are not holes due to electron motion, and have a
different drift velocity and dynamics to the electrons. Given that, it seems
self-evident that an equation governing the dynamics of the vacancy drift
should contain terms that all refer to the vacancies and not the total num-
ber of charge carriers. Integrating to get equation 13 means that the charge
is the total charge, Q in the system. This charge is Q = qv + qe, which as
qe � qv means that the charge in equation 13 has been vastly overestimated.
I suggest that the charge that should be in the memristor equation should
be the charge relating to the vacancies and not the total charge within the
system.

This misunderstanding of the value of q has led to a confusion about the
value of the magnetic flux associated with memristance. If the relevant q is
not

∫
Idt, then the magnetic flux is not

∫
V dt, and thus is unlikely to be

as large, which explains why the magnetic flux has not been experimentally
measured.

We will now go on to derive the memristance for the Strukov memristor.

3 Introducing the Memory Property

The following analysis is general but will be discussed using the example
of the Strukov memristor. The question of whether the Strukov memristor
is a true Chua memristor will be approached by first asking how a Chua
memristor would behave based on Chua’s equations. We are going to focus
on the physical property of the memristor responsible for its memory, which
we shall call the ‘memory property’.

For there to be a memory in a memristor, we shall postulate that the
memory property must be both separate from the conducting electrodes,
and slower to respond to a voltage change than the conducting electrons.
This slower response time leads to the lag in current which gives rise to the
hysteresis loop and explains the frequency dependence of memristance: if
the voltage changes too fast for the memory property, it can’t respond fast
enough for a measurable change and the size of the hysteresis loop shrinks
to a straight line (this is the ohmic regime).

The memory property has to respond to the voltage, which suggests
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that it either needs to be affected by the potential difference and therefore
be charged, or to undergo a structural change due to the electrical energy
supplied. Note that to make a memristor, rather than a memristive system,
the device property that causes this change in resistance must be controlled
by voltage – this is necessary for the memristor to be a two-terminal device
which is part of Chua’s definition for a fundamental circuit element mem-
ristor. And, for the memristor to be of any real use, this change in memory
property has to be (at least qualitatively) reversible, so the device can switch
back and forth.

There are several different possibilities for memory properties, such as
charged ions in the PEO-PANI memristive system [15], or the concentration
of spin electrons [26] in spintronic systems or the ‘thermal’ phase change
that can be triggered by voltage in a VO2 thin film [27].

To be explicit, the memory property is the physical property or part of
the system which holds the system’s state, and the state variable is the the-
oretical label of the aspect of the memory property which is q in equation 3.
We expect these to be related.

Strukov et al assumed that q (the state variable in equation 3) should
be the conducting electronic charge, qe (or rather the total charge in the
system which is over-whelmingly the electronic charge), as they derive it
by integrating the ohmic electronic current over time, but this is impossible
because the conducting electrons cannot travel more slowly than themselves
and thus the electronic charge can not be a cause of hysteresis. The elec-
tronic current measures the lag, therefore it can not also cause it, otherwise
there would be no lag to measure it would be indistinguishable from the
response. Therefore, another aspect of the system must be responding to
the voltage on a different timescale and it is this response which affects the
electronic current.

The property that best fits the criteria outlined for the memory property
is the oxygen vacancies because the state of the memristor is stored in the
oxygen vacancies (as they do not dissipate when the voltage is removed),
they drift slower than the conducting electrons which introduces the hys-
teretic lag (which is recorded in the electronic current because their presence
changes the resistivity of the material) and they respond to voltage. If the
vacancies are the memory property, then it is their charge, qv, which is the
state variable which should be used in Chua’s equation. Thus, although it is
the effect on the electronic current which is measured (and will be of use in
real world devices), the electronic current is irrelevant in the actual process
of memristance.

Note, Strukov et al, and others, were aware that the vacancies are the
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physical property responsible for the memory, however, they did not relate
it to the state variable in Chua’s equation, instead assuming that it was
the electronic charge, the time integral of electronic current, which was
important. Most improvements to the early phenomenological model [19]
focused either on abstracting the behaviour, usually by entirely removing
the contribution of the vacancies or by concentrating only on the behaviour
of Chua’s equations. These posit that approaches are incorrect for two
reasons: A. the conducting electrons are not the charge that should be in
Chua’s equations; B. just focusing on Chua’s equation does not give an
adequate model for the behaviour of real devices.

To derive an alternative model of the memristance of the Strukov mem-
ristor, we shall calculate the magnetic flux associated with vacancy motion.

4 Calculating the Magnetic Flux

We are going to investigate Strukov et al’s memristor as it is a typical
memristor device and had the phenomenological theory applied to it. The
schematic for this memristor is shown in figure 1. Note that the x direction
is taken as being the direction of ion flow, with D being the limit of the
titanium dioxide layer in the direction (i.e. it’s thickness which is 10nm [19])
and w(t) being the position of the boundary where 0 < w(t) < D. The y
and z axes are in the plane of the electrodes with the limits E and F and
are both 50nm in the crossbar memristor. We take the terms of our integral
in the coordinate system for inside the memristor, i.e.: rx, ry and rz. To be
explicit about our starting assumptions, we assume a linear boundary and
that the memory property required from our analysis of Chua’s equations is
the oxygen ions/oxygen vacancies.

4.1 Calculating the Magnetic Feild Due to the Oxygen Va-
cancy Current

To calculate the flux which should be in Chua’s equation, we start by cal-
culating the flux associated with a steady-line current, and this is given by
the Biot-Savert law for the magnetic field associated with a volume current.
This is the most appropriate formulation of the Biot-Savert law because we
are going to consider the magnetic flux just above the memristor surface
where the memristor is best viewed as a 3-dimensional object. The Biot-
Savert law comes from magnetostatics, a branch of theory that describes the
magnetic effects due to constant currents, although our current will change,
magnetostatics is still a valid approach because the changing current is, in
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this case, far slower than that to which such theory is successfully applied
(namely mains A.C. (50-60Hz)) [28].

From this expression and using the Biot-Savert law, the magnetic field
(also known as magnetic flux density), B, at a point, p, associated with with
this charge is given by the Biot-Savert law for a volume current, J:

B(p) =
µ0

4π

∫
JdĴ×r̂
r2

dτ (31)

where µ0 is the permittivity of a vacuum, dĴ and dr̂ are the unit vectors
for J and r where r is the vector of length r from the volume infinitesimal
dτ to point p, given by r = {rx̂i, ry ĵ, rzk̂}.

The magnetic field integral in equation 32 is taken over the volume of the
device that contains flowing vacancies (which is w × E × F ). This volume
is time-dependent due to w, but at an instant in time, t, the magnetic field
is given by

B(p, t) =
µ0

4π

∫ F

0

∫ E

0

∫ w(t)

0

J×r
|r|3

drxdrydrz , (32)

where we have expanded the volume integral to a 3-D Cartesian space
and |r|3 is the cube of the length of vector r, and the change in power of the
denominator arises from the replacement of the unit vector in equation 31
with the definition of a unit vector (which is r̂ = r

|r|). Note that the integral
in equation 32 is over the Cartesian components of r, and to be explicit
|r|3 = (r2

x + r2
y + r2

z)
3
2

The integral is solved using the technique of integration by parts, taking
the cross product in the numerator, J×r, as dg(rx, ry, rz) and the denomi-
nator, 1

(r2
x+r2

y+r2
z)

3
2

as f(rx, ry, rz)
2.

As we know the form of r, to solve equation 32 we will need to know the
volume current density vector, J, it is given by J = ρvsv, where ρv is the
charge density of oxygen vacancies and sv is their average drift velocity. The
charge density can be expressed as ρv = nzv

vol , where zv is the charge on a
single oxygen vacancy (+1 in this scheme because we are dealing with single
oxygen vacancy in TiO2 material, not the equivalent motion of an oxygen
ion O− or the effective charge on an oxygen atom O−2), nv is the number

2The rule for integration by parts in this case is given by∫∫∫
f (rx, ry, rz)

(
∂

∂rx

∂
∂ry

∂
∂rz

g (rx, ry, rz)
)

drxdrydrz =

f (rx, ry, rz) g (rx, ry, rz)

−
∫∫∫ (

∂
∂rx

∂
∂ry

∂
∂rz

f (rx, ry, rz)
)
g (rx, ry, rz) drxdrydrz
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of oxygen vacancies and vol is the volume. We substitute this for ρv and
substitute for sv using equations 8 and 9, as in section 2.2 Thus, the volume
current density for all the oxygen vacancies is

J =
nvzvµvL

vol
. (33)

Note that L and µv are average properties, so we are dealing with the
bulk movement of vacancies: individual vacancies can move at different
speeds and in different directions, but drift along the feild lines on aver-
age. The total charge due to the oxygen vacancies (and also our memory
property), qv, is qv = nvzv and so our final equation for J is

J =
qvµvL

vol
, (34)

and is function of time because qv(t). Note that L can also vary with time
in some experiments. The vector J is taken as being

J = {qvµvL
vol

î, 0̂j, 0k̂} , (35)

because field and drift direction are taken as being in the +x direction for
the Strukov device.

If we put equation 34 into equation 32 and solve as described above we
get

B(p) =
µ0

4π
Lµvqv{Px,−xzPy, xyPz} (36)

with

Px = 0 ,

Py =
F

2 (w2 + E2 + F 2)
3
2

− 1

2wEF

ay
((w2 + F 2) b)

+F arctan

(
wE

F
√
w2 + E2 + F 2

)
,

and
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Pz =
E

2 (w2 + E2 + F 2)
3
2

− 1

2wEF

az
((w2 + E2) b)

+E arctan

(
wF

E
√
w2 + E2 + F 2

)
,

where

ay = wE(F 2
(
E2 + F 2

)2
+ w4

(
2E2 + F 2

)
+w2

(
2E4 + 5E2F 2 + 2F 4)

)
,

az = wF (E2
(
E2 + F 2

)2
+ w4

(
E2 + 2F 2

)
+w2

(
2E4 + 5E2F 2 + 2F 4)

)
b =

(
E2 + F 2

) (
w2 + E2 + F 2

) 3
2 .

Py and Pz contain only the dimensions of the memristor, so even if
they are not analytically simple, they are easy to calculate numerically. As
expected of a magnetic field, the divergence of the field is zero, i.e. ∇·B = 0.

As an example, for a Strukov memristor which is close to being full with
the maximum number of vacancies (i.e. the limit) the field at point p is
given by

B(p) = {0,−6.37qvV xz, 6.37qvV xy},

where V is the applied voltage, p = {x, y, z} and x, y and z refer to
a second set of coordinates which are located outside the memristor whose
unit vectors are ı̂, ̂ and k̂ 3. The curl of B is non-zero as the field curls
around the current in an anti-clockwise direction. An example curl for the

3The volume current is constrained within the memristor and can be written in terms
of coordinates inside the memristor. The magnetic field (as caused by the volume current)
can only exist outside the memristor and therefore can be written in terms of coordinates
from outside the memristor. The two sets are labelled differently here to avoid confusion.
If the distinction is not made between the two sets, then it’s possible that the inside
coordinates might be integrated over twice, which would be wrong. Perhaps confusingly,
the limits are the similar. The inside coordinates have the limits: 0 ≤ rx ≤ D; 0 ≤ ry ≤ E;
0 ≤ rz ≤ F ;. The outside coordinates can go from −∞ to ∞ but must avoid the volume
within the memristor
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system above evaluated at {0, 0, 0} (just inside the left hand side of the
device) is ∇ × B = {12.74qvV,−6.37qvV,−6.37qvV }. The gradient of the
field indicates the direction of travel that gives maximal field values, i.e.
∇B = {0,−6.37qvV xz, 6.37qvV xy}, namely that there is no increase in the
x direction and that the maximal vector field is experience by looping around
the x axis.

4.2 Calculating the Magnetic Flux due to Oxygen Vacancy
Current

The magnetic B field is the magnetic flux density and so to calculate the
magnetic flux through a surface associated with this field, ϕ, we need to
take the surface integral

ϕ =

∫
B· dA (37)

where dA is the normal vector from the surface infinitesimal dA.
As it is a surface integral, to calculate the magnetic flux we need to pick

a surface to evaluate over. It makes sense to choose a surface that correlates
to one of the surfaces of the device. Picking the surface just above the
device (0 < x < D, 0 < y < E, z = F 4), we use the surface normal
area infinitesimal, dA, which is given by dA = {0, 0, ı̂̂}. As is standard
in electromagnetism, we integrate over the entire area. The limits of the
surface are taken to be the dimensions of the device.

By putting the expression for B in equation 36 into equation 37 and
taking the surface integral, we derive the general form of the magnetic flux
passing through a surface i-j:

ϕ =
µ0

4π
LµvijPkqv , (38)

where iε{x, y, z}, jε{x, y, z}, kε{x, y, z}, i.e. Pk is component in the vector
in equation 36 which is perpendicular to the surface i− j where i and j can
be any two of the Cartesian directions.

Equation 38 contains a physical magnetic flux, satisfies Chua’s equation
ϕ = M(q)q [9] and crucially has been derived without reference to Chua’s
equations. Note that this relation between charge and flux in a memristor
includes the material properties and is the first to do so.

4Actually z = F + dF so the surface is just above the memristor, avoiding any surface
effects.
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By reference to equation 4, the Chua memristance in this device is ex-
pressed as:

M (qv (t)) = UXµvPk (qv (t)) , (39)

where we have gathered up the constants and explicitly included Pk’s de-
pendence on qv.

Equation 39 can be considered as three separate parts:

1. U , the universal constants: µ0

4π , this term includes the effects of the per-
mittivity of a vacuum on memristance. It’s inclusion in the equation
clearly demonstrates that magnetism is involved in memristance.

2. X, the experimental constants: DEL, where DE is the surface the flux
was calculated over as we’ve substituted in for i and j, in this case the
top of the device. The constant X will be different for different devices
and experiments and is time-dependent if V is.

3. β, the material variable: µvPz, this includes the physical dimensions
of the device, but it will change throughout the experiment as a re-
sult of the moving boundary, w(t), whose motion is caused by the
drift of vacancies across the device. This is the only term that con-
tains variables. Note, it is from this term, via the value of µv and its
interaction with the applied voltage frequency that the memristor’s
frequency dependence arises.

For the Strukov memristor, Py and Pz are equal in magnitude because
the magnetic field is centro-symmetric around the vacancy current (which
flows in the +x direction, see figure 1). Thus, the values of the memristance
calculated from the x-y and x-z surfaces are the same, see Table 1. As w is
a measure of how far the vacancies extend into the material it is dependent
on qv and thus Pk is a function of qv. Interestingly, equation 39 implies that
the Chua memristance has directional dependence, and will only be non-
zero for surfaces that cut magnetic field lines, the y-z surface doesn’t, and
thus Px is zero. This raises the intriguing possibility of memristance being
best described as a three-dimensional property. For most systems there
will be only one non-zero value. As Chua suggested that the memristance
could be either charge or flux controlled [2], the memristance calculated here
should be capable of being controlled by either and thus holding a memory
of either. And it does, Pk(qv) is part of the Chua memristance which holds
the memory of the charge, β, is part of the memristance which holds the
memory for the flux.
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Device Area Integral Value

surface infinitesimal for Strukov

d̂A memristor

Top {0, 0, ı̂̂} ϕtop = -3.186×10−15qv∫ E
0

∫ D
0 B · d̂Adxdy

Bottom {0, 0,−ı̂̂} ϕbottom = -3.186×10−15qv∫ E
0

∫ D
0 B · d̂Adxdy

Front {0, ı̂k̂ , 0} ϕfront = -3.186×10−15qv∫ F
0

∫ D
0 B · d̂Adxdz

Back {0,−ı̂k̂ , 0} ϕback = 3.186×10−15qv∫ F
0

∫ D
0 B · d̂Adxdz

Left {̂k̂ , 0, 0} ϕleft = 0∫ F
0

∫ E
0 B · d̂Adydz

Right {−̂k̂ , 0, 0} ϕright = 0∫ F
0

∫ E
0 B · d̂Adydz

Table 1: Table for the magnetic flux as calculated from the different possible
surfaces of the memristor.

Putting in real-world values for the device characteristics (as above, in-
cluding V = 1V ) for the Strukov memristor gives a memristance equation
of dϕ = 3.53× 1015dq, and a ϕ− q plot is linear over the range 0 < w < D
(where w must be strictly more than 0 to avoid 1/0 errors), indicating this
model is a perfect memristor because it satisfies Chua’s constitutive defini-
tion (equation 3) with a constant value.

With these real-world example values, the Stukov memristors has flux
of 2.44×10−29Wb. In contrast, the magnetic flux associated with the con-
ducting electrons through the same surface5 is -4.07×10−24Wb. This is in
the opposite direction and approximately 100 000 times bigger than the va-

5To get the number of electrons, we’ve assumed that the TiO2 is acting like a metal
and every titanium atom is giving up a conducting electron. To get the number of oxygens
that can be lost, we’re assuming that maximum of 3% of available oxygen atoms

22



cancies’ magnetic flux. This may explain why the magnetic flux associated
with memristor function has not been experimentally measured.

4.3 Strukov ‘Magnetic Flux’ Term

The units of Py and Pz are m−2, and interestingly, Strukov et al’s model
included an approximation for the material parameter β as βst ≈ µv/D

2.
βst can be viewed as an unintentional approximation for the magnetic flux
as both β terms have units of Wb−1. However, this approximation is not
quantitative: in order to produce the flux expected from Strukov et al’s
model, the memristor would need to contain a B field similar in size to
those found in neutron stars and magnetars. Also, Strukov et al’s model also
lacks any reference to magnetic permittivity (of vacuum or the material),
the inclusion of which would be expected in a system describing magnetic
flux.

Proof. If ϕ = D2

µv
and ϕ =

∫
B.dA, and D2 taken to be an approximation for

the surface of the memristor xy, ie the area we integrate over, then B = dϕ
dA .

As dA = dxdy,

B =
d2ϕ

dxdy
=
d2
(
D2

µv

)
dxdy

=
d2
(
xy
µv

)
dxdy

=
1

µv
, (40)

which is approximately 1×1014 T, magnetars (neutron stars with strong
magnetic fields) have magnetic fields from 108T upwards.

5 Memory and Conservation Functions

How can the tiny (∼ 10−29Wb) magnetic flux in the Strukov memristor be
associated with the large effect seen in experimental I-V curves? The answer
is because the memristive movement of charge affects the resistivity of the
material, and it is this resistivity change that is ‘sampled’ by the conducting
electronic current.

When measuring a memristor it is conventional to measure the electronic
current, not the ionic current. As the electronic current is many times larger
and faster than the movement of vacancies, we can even choose to ignore
the vacancy contribution to the total flow of charge, without introducing a
significant error. What is needed is the memristance as experienced by the
conducting electrons, Rtot(t). The component of that memristance which is
directly due to the changing resistivity of the doped material, Me, which we
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shall call the Memory Function as it encapsulates the memristor’s memory,
is given by

Me = CM(qv(t)) ,

where C is an experimentally determined parameter for the material.
Because the ion mobilities of the electrons, µe, and the vacancies, µv,

are measured experimentally, it is predicted that C = (qeµe) / (qvµv).
The memory function describes the doped part of the titanium dioxide,

TiO(2−x), as experienced by the electrons traversing it. The proportion of
the memristor made up of this form changes, and, because matter must be
conserved in the model, the proportion of the memristor made up of un-
doped TiO2 is given by the conservation function, Rcon, which is simply the
resistance of the un-doped material:

Rcon (t) =
(D − w (t)) ρT iO2

EF
(41)

where ρT iO2 is the resistivity of un-doped TiO2. Note, Strukov et al’s
model was based on a similar conservation function (as it arises from Ohm’s
law) and, as this is responsible for most of the observed change in the device,
their model gave memristor I − V curves.

The total resistance as experienced by the conducting electrons, Rtot, is
then given by

Rtot = Rcon +Me . (42)

As Rtot is a resistance that changes with time due to the action of charge
it is therefore also a memristance and this equation gives the pinched hys-
teresis loop in I-V space which is indicative of memristance, as shown in
figure 3. Separately, both the conservation and memory functions are also
memristances and both can give rise to a memristive I-V curve. The memory
function is just the Chua memristance expressed in terms of the conducting
electrons. The conservation function is memristance due to the change in
volume of the un-doped material, which is the second effect of the oxygen
vacancies’ movement into the TiO2.

One definition of a Chua memristor is that it is a function of a single
state variable [2]. The only variable in the conservation function is w and
because w is a measure of how far the memristive charges have moved, the
Chua memristance, and thus the memory function, can be written in terms
of w instead of q. Therefore, Rtot can be written as a function of w only,
thus demonstrating that the Strukov memristor is a Chua memristor with
one state variable w. Assuming that the vacancies are spread out in the
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Figure 2: Diagrammatic representation of the presented memristor model.
The Magnetic subsystem refers to the magnetic flux required by Chuas def-
inition of memristance and the non-electronic charge carriers that give rise
to it. The Electronic subsystem refers to the effects experienced by the
conducting electrons. Shown here is an example of a voltage controlled
memristor where the applied voltage causes the non-electronic carriers to
drift and their movement effects local resistivity of the material, altering
the total resistance Rtot and affecting the measured electronic current.

same way across the device, (ie that TiO(2−x)) w is a measure of q and these
equations can also be expressed in terms of a single state variable q.

Thus we have demonstrated that in order to describe memristance, two
systems need to be considered, as is shown diagrammatically in figure 2.
The first is the ‘electronic’ system, which is associated with the conducting
electrons and which provides the ‘electronic current’ response to an applied
voltage.

The second system is the ‘magnetic’ system, which contains the mag-
netic flux and the ‘memristive’ charge, i.e. the vacancies. Note that these
charge carriers are not especially magnetic (neither is it claimed here that
the memristive charge carriers are acting as magnetic monopoles, although
that comparison has been made [29]). Instead, the charge responsible for
the memory function of the memristor is being separated conceptually from
the charge due to the conducting electrons. It is important to realise that
the existence of memristive magnetic flux in the system does not mean that
the memristor is magnetised in a traditional sense. The ‘magnetism’ in
the system is not similar to the magnetism of ferrous materials that are
capable of holding or reacting strongly to a magnetic field. Instead the
memristor magnetic effect is similar to the atomic scale magnetic suscepti-
bility as understood and exploited by NMR spectroscopy and MRI imaging.
Furthermore, the ‘magnetic’ system does not describe all of the properties of
the memristor that exhibit magnetism. For example, there is magnetic flux
associated with the conducting electrons, but this flux is mostly irrelevant
to understanding the memristive operation of the device.
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Figure 3: An example memristor I-V curve as calculated from the presented
theory. The memory allows there to be more than one possible current for
a given voltage, which causes the hysteresis, and as memristors are passive
devices and therefore can not store energy, the current must be zero when
the voltage is, which causes the distinctive pinched shape. This I-V curve
matches Chuas theoretical I-V curves − real memristors tend to have a
threshold voltage below which the system less memristive, which causes
elongated, pinched areas in the I-V curve.

6 The effect of dimensionality

The numerical values for the magnetic flux as predicted from this model and
Strukov’s model are vastly different. In terms of the variables, the model
presented here requires a consideration of both the vacancy charge and the
electronic current. Theoretically, there is also a difference in dimension.
Strukov et al’s model is 1-dimensional as it is only dependent on the spatial
dimensionD, ie only the thickness of the device matters. This dependence on
D has led to the claim that memristors will only work on the nanoscale [19], a
claim that has been contradicted by the creation of macroscopic memristors
such as Gale et al’s thick film memristors [23]. The theory presented here
in this paper it three-dimensional and thus the effect of electrode width
ought to change the Chua memristance and the properties of the device
(Experimental tests of this are given in [30]).
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6.1 Modelling flexible sol-gel memristors

To compare a 3-dimensional description with a 1-dimensional one, we shall
briefly consider sol-gel devices fabricated with 40nm thick titanium dioxide
and 4mm wide aluminium electrodes (see [31]). As there is no change in
orientation, the numbers can simply be put into the equations above. A
sol-gel memristor of this type has a magnetic B field that is 2.3×1010 Teslas
smaller than the Strukov memristor. The increased thickness of the titanium
dioxide layer reduces the field by only an order of magnitude, the rest of the
reduction is due to the extra width of the electrodes, something which is not
included in one-dimensional models (so applying the Strukov model to this
device would give answers that are inaccurate).

The size of the electrode surface also affects the calculation of the flux, as
we calculate it over the whole surface, which gives a value of ϕ = 1.76777 ∗
10−19q which is four orders of magnitude smaller than the values given in
table 1. If both devices were charging up to the maximum charge (i.e.
approaching the limit as described above) the sol-gel device has 1.62×107

more Webers of flux than the Strukov memristor. This is because the device
has a larger volume (note that the electrons’ magnetic flux is also increased
by a similar amount). If we had only considered the thickness of the layer,
we would get the erroneous result that the sol-gel memristor had a smaller
amount of flux than the Strukov memristor. This clearly demonstrates that,
although the 1-dimensional model is a useful simplification, it does ignore
necessary aspects of the system.

6.2 Modelling PEO-PANI memristors

Further differences between theoretical approaches are observed when de-
vices with different geometry are considered. The PEO-PANI memristor
(also called the organic memristor) is difficult to model with a one-dimensional
electron-based theory. The electrons flow along the PANI layer, parallel to
the glass substrate and the resistance of the PANI is affected by the lithium
ions which are drifting between the PEO and PANI perpendicular to the
glass substrate, see figure 4 and [14, 15, 32, 33] for further details. This is
obviously a system that can not be accurately described in one-dimensional
space. The second complication is that the ions that cause the resistivity
change are obviously chemically-unrelated to the electrons so describing this
device without reference to these ions would involve tortuous logic.

As above we shall take the x axis as being the direction that the electrons
drift in and thus the lithium ions drift parallel to the z axis, so w is now
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Figure 4: Device schematic for the plastic (PEO-PANI) memristor. A layer
of poly-aniline (PANI) is applied before lithium (Li+-doped Poly-ethylene
oxide (PEO)) is placed on top and earthed. Ionic dopants diffuse from the
PEO into the PANI making it conductive, application of voltage through
the PANI layer has the effect of moving the dopants in and out of the PANI
layer.

related to the z axis, i.e. 0 < w < F . The width of the active area is now
1mm ( [34]), which is also the extent of the device in the y direction. Thus,
J , the ionic current density is given by

J =
qvµLiL

vol
= {0, 0, qvµLi

E2w
k̂} .

where the active area is taken to be a square of E2. The resulting
magnetic field is zero in the z-direction and has expressions in the x and
y directions analogous to those shown above and there is no magnetic flux
through the top and bottom of the device.

The conservation function has to be written from the point of view of
the electrons, so the formulae are 90 degrees out compared to the Strukov
memristor and we must also include the unswitchable resistance, Ru, of the
part of the memristor that is un-switchable (shown in white in figure 4)
because it does not have PEO on top of it, this is given by.

Ru =
(D − E)ρon

EF
.

The switchable volume in the off state, Roff , of the memristor is given by
Eρoff
Ew , which cancels to ρoff

w and thus the conservation function is Ru + Roff

and the memory function is as above.
As the electronic and ionic currents are at 90◦ to each other, their mag-

netic fields can interact. Because the electrons have the larger magnetic field
which has a negative z-term, a positive ions in the device should drift down-
wards quicker than it drifts upwards, as the electrons’ magnetic field works
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with the applied electrical field. This would lead to fast kinetics for recharg-
ing the device (the PEO-PANI memristor starts off doped and is switched
to undoped and then re-doped during an I-V cycle), which is indeed what
is reported in [5].

7 Conclusion

We have demonstrated that the Strukov derivation has a mathematical error
that renders the expression for M(q) in [19] unsupported and unusable. It
has been shown that calculating ϕ from qv gives an alternative expression for
M(q) that fits the real system and satisfies Chua’s constitutive definitions
in [9]. This approach clarifies the value of memristor magnetic flux and
demonstrates that the Strukov memristor is a Chua memristor. By doing so,
it relates the previously theoretical q and ϕ to real-world material properties
for the first time. This result will provide a new paradigm in memristor
research, by conceptually separating the memristive magnetic flux from the
conducting electronic current, and by introducing the concept of a memory
property. Further work in this direction involves relating the fabrication and
experimental values found in the theory to actual device behaviour. For our
work in this direction see [30].

The model presented here is spatially three-dimensional and it has been
demonstrated that this makes a significant difference in the theoretical pre-
dictions for real world systems such as the flexible TiO2 sol-gel and PEO-
PANI memristors. Investigations into whether a three-dimensional theory
is borne out by experiment is included in [30].

This model is for ‘perfect’ Chua memristors. Further work would be to
apply this theory to other memristor systems including those with different
memory properties (i.e. not ions), memristive systems (i.e. those with
two state variables) and ReRAM. Preliminary work applying this theory to
filamentary memristors has been published in [35].

The theory presented in this paper gives rise to some intriguing possibil-
ities. The ‘conversion’ between the Chua memristance described from the
point of view of the oxygen vacancies and the memory function as described
from the point of view of the electrons suggests that resistance is a quantity
that depends on the charge carrier experiencing it. Reformulating resistance
in this way could provide more natural ways to discuss systems with many
charge carriers, such as the PEO-PANI memristor and living systems. Many
memristors have the presence or absence of ions as a memory property, and
with this work the expectation for a large magnetic flux to be associated
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with memristance has been removed, which suggests that synapses are ac-
tually biological memristors rather than just being conveniently modeled by
the mathematics.
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