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Gravity is the weakest force in nature, and the gravitational interactions with all standard model
(SM) particles can be well described by perturbative expansions of the Einstein-Hilbert action as an
effective theory, all the way up to energies below the fundamental Planck scale. We use Vilkovisky-
DeWitt method to derive the first gauge-invariant nonzero gravitational power-law corrections to the
running of gauge couplings, which make both Abel and non-Abel gauge interactions asymptotically
free. We further demonstrate that the graviton-induced universal power-law runnings always assist
the three SM gauge forces to reach unification around the Planck scale, irrespective of the detail
of logarithmic corrections. We also compute the power-law corrections to the SM Higgs sector and
derive modified triviality bound on the Higgs boson mass.
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1. INTRODUCTION

Although gravity, as the weakest force in nature, is
more perturbabtive than the other three fundamental
forces all the way up to energies below the Planck scale,
it was found to be non-renormalizable in the conventional
sense [1]. But this does not prevent the enormous range
of successful physical and astrophysical applications of
the Einstein general relativity of gravitation. In fact, all
nature’s four fundamental forces can be well described
by the modern formulation of effective field theories|2],
with no exception to gravitation[3]. The leading terms
in the Einstein-Hilbert action,

Sen = /d% —g K *(R—2A), (1)
are just the least suppressed operators in the effective
theory of general relativity under perturbative low energy
expansion, where k? = 167G = 167/M3% is fixed by
the Newton constant G (or Planck mass Mp ~ 1.2 x
109 GeV) and Ag denotes the cosmological constant.

All standard model (SM) particles must join gravita-
tional interaction with their couplings controlled by the
universal Newton constant G. It is thus important to
understand, under the effective theory formulation, how
gravity corrects the SM observables, in connection to
the other three gauge forces in nature. Robinson and
Wilczek [4] initiated a very interesting study of gravita-
tional corrections to running gauge couplings, but it was
then realized that their calculation by using conventional
background field method (BFM) [5] is generally gauge-
dependent and the net result vanishes [6, 7].

However, it is important to note that Vilkovisky and
DeWitt [8] proposed a new approach over the conven-
tional BFM, especially powerful for analyses involving
gravitation, which is guaranteed to be gauge-invariant,
independent of the choices of both gauge-condition and
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gauge-parameter [9, 10]. The Vilkovisky-DeWitt method
was recently applied by Toms to study logarithmic cor-
rections of graviton to the running coupling of QED with
a nonzero cosmological constant [11] under dimensional
regularization, and to scalar mass[12].

The purpose of the present work is to apply the fully
gauge-invariant Vilkovisky-DeWitt method [8] for study-
ing the gravitational corrections to the power-law run-
ning of Abel and non-Abel gauge couplings. We derive
the first gauge-invariant nonzero power-law correction,
which is asymptotically free, in support of what Robin-
son and Wilczek hoped. We also extend this approach
for studying power-law corrections to the SM Higgs sec-
tor and derive modified triviality bound on the Higgs
boson mass [13], as will be summarized in the last part
of this paper. The power-law running originates from
the quadratical divergences associated with graviton loop
with overall couplings proportional to x2. The gravi-
tational coupling x? has negative mass-dimension equal
—2, so the graviton induced loop contributions can gen-
erate generic dimensionless power-law corrections to a
given gauge coupling g,, of the form g,x*A?, where A
is the ultraviolet (UV) momentum cutoff. After renor-
malization one can deduce the generic form of one-loop
Callan-Symanzik 8 function by general dimensional anal-
ysis,

boi 4 ) 2 2
_Wgz + (47_‘_)2 ('ka H )gzu

B(gis 1) = (2)

where p is the renormalization scale and the coefficient
ag has to be determined by explicit, gauge-invariant com-
putation of graviton radiative corrections. There is no
reason a priori to expect a, be exactly zero (as stressed
by Robinson and Wilczek). Our key point here is to
extract the physical power-law corrections via a fully
gauge-invariant method a la Vilkovisky-DeWitt [8]. The
physical meaning of the quadratical divergences in non-
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renormalizable theories was clarified in depth by Velt-
man [14] and he advocated to use dimensional reduction
(DRED) method [15] (rather than dimensional regular-
ization (DREG)) to consistently regularize quadratical
divergences as d = 2 poles for the Higgs mass correc-
tions in the SM. Then, Einhorn and Jones made further
insight [16] that any regularization procedure which pre-
serves the right number of spin degrees of freedom for
each field should give the correct results of quadratical
divergence. This includes DRED but excludes DREG, as
DREG is inconsistent for dealing with quadratical diver-
gences [14, 16]. There is no need to explicitly regularize
the quadratically divergent integrals until after we fin-
ish computing and summing up all their coefficients via
gauge-invariant formulation, then a common momentum
cutoff can be placed on the remaining single divergent
integral and renormalization will be carried out to ex-
tract the power-law corrections. (This procedure was
applied to extract the gauge-invariant quadratical diver-
gence in the Higgs boson mass and was proven to be
regularization-independent [16].) We have also explicitly
used DRED method for our analysis (& la Veltman [14])
to serve as consistency check.

2. GAUGE-INVARIANT VILKOVISKY-DEWITT
EFFECTIVE ACTION

The Vilkovisky-DeWitt approach [8] modifies the con-
ventional BFM in order to build a manifestly gauge in-
variant effective action. The key observation is that a
change in the gauge fixing condition for a gauge the-
ory is equivalent to a change of external source term,
or a field-reparametrization ¢, — ¢} (where we use the
condensed notation of DeWitt [17], with the subscript 4
denoting all internal and spacetime indices besides the
spacetime coordinates). Note that the classical action
S[g] is reparametrization invariant and thus behaves as
a “scalar” under field reparametrization; but the effec-
tive action I'[@] in the conventional BFM is not a scalar.
This fact can be understood from the definition of con-
ventional T'[@],

T[]
gt |’

9 = [apuldlexpi|slel + (7'~ ) )
where ¢ denotes the background of ¢, and dy u[y] is
the measure of functional integral. For a gauge theory,
1[p] contains gauge-fixing condition and the correspond-
ing DeWitt-Faddeev-Popov determinant. The last term
in the exponent is generally not a scalar under the field
reparametrization. This fact can be easily understood if
we take geometrical viewpoint and treat the field con-
figuration space as a manifold [8]. Then, it is clear that
the difference of two distinct points @ — ¢! is gener-
ally not well defined, in the sense that it is not field-
reparametrization covariant. As a result, the effective

FIG. 1: Coordinates difference in field space as a manifold.

action I'[¢] may depend on the choice of gauge condi-
tion.

The way out of this trouble is to replace the coordinate
difference @' — ¢’ by a covariant vector o[y, @] as illus-
trated in Fig.1, and introduce a connection Fé-k in field
space (with which the parallel transport can be defined).
Thus, the Vilkovisky-DeWitt effective action I', as a
scalar in the field space, can be constructed as [8],

eel#) — [dpulgl expilSlel + 5 (el alelo’ o, ],

(4)
where I'g; = 0T'¢ /0@ and we will always use a subscript
“comma” to denote the functional derivative. Here o* is
the vector introduced in field space, and with the aid of
connection 1"; . can be expanded as

i i i 1o i
oo, @) = ¢ — ¢ = STilp = Yilp— @)+ (5)

The coeflicient C; ! can also be expanded perturbatively,

Cqir— 1 _ _ _
Ci 1] = G5t g R @lo™ 2, ¢)0™ (2 el (6)
where R! is the curvature tensor associated with con-

mnj
nection T'%, .

Under perturbative expansion, we can write down one-
loop Vilkovisky-DeWitt effective action, which is also a
scalar under reparametrization,

Palgl =S¢~ iulg] + T V,Vos, (1)

where V,, is the covariant derivative associated with
connection I |

528 525 . 4§
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For a gauge theory, consider the infinitesimal gauge
transformation,

5p' = KL[p]e™, 9)

with K![¢] being the generators of gauge transforma-
tion and €“ the infinitesimal gauge parameters. Thus,
for quantization the gauge-fixing condition x,(¢) and
the DeWitt-Faddeev-Popov ghost term Qas[p] = ?‘Tg
should be introduced. So, the Vilkovisky-DeWitt effec-
tive action is given by, up to one-loop order,

Ilg]l = S[p] - Indet Quplp]
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which is proven to be invariant under the change of gauge
condition x, and gauge-fixing parameter £ [8, 9]. We
have defined the background field @’ and fluctuating
field @' via ' = @' + @'. For calculations in a spe-
cific gauge theory, the connection I‘;k is very compli-
cated and non-local. But it can be shown that, when the
Landau-DeWitt gauge condition

Xa[@va] = Kai[@](ﬁi =0 (11)

is chosen, the relevant parts of connection coefficients are
simply given by the Christoffel symbol associated with a
metric G;; in field space [18],

. 1
k= 56'“((%,1@ + Gek,j — Gijke) - (12)

In summary, Vilkovisky-DeWitt effective action pro-
vides a fully gauge-invariant description of the off-shell
gauge field theories, which is guaranteed to be inde-
pendent of choices of both gauge-condition and gauge-
parameter. In the following, we will apply this method
to analyze the quantum gravity coupled to the Abel and
non-Abel gauge theories, as well as the SM Higgs sector.

3. GRAVITATIONAL CORRECTIONS TO ABEL
AND NON-ABEL s FUNCTIONS

We start from the classical action of Einstein-Maxwell
theory, which consists of the Einstein-Hilbert action (1)
and

1
Spv = —Z/d4x\/—gg“°‘g”ﬁF#l,Fa5. (13)

Since the Vilkovisky-DeWitt method does not require on-
shell background, we expand the metric g, around the
Minkowski background 1, ,

g;,uj = n;,uj + K/h;,uj ° (14)
We further split the gauge field A, as
A# = A# + au ) (15)

with A,, the background field and a,, the quantum fluc-
tuating field. As shown in Eq. (12), the connection T'%,
is determined from the metric G;; defined in the field
manifold. There is a natural choice [8] of the field-space
metric G;; with its nonzero components given by

\ _g oV rvo v,
Gy, (2)g,5(0) = W(g“ g"P+g"Pg" — g g*P)s(x—y)

Ga, (A, () = V99" 0(x—y) . (16)

Thus, the relevant part of connection can be derived from
Eq. (12) under the Landau-DeWitt gauge condition (11),

9po (T) _ 1 uvs(asB) o 1 aBs(usy) _ sla B)(usv)
9w (W90 (z) 19" 6p 0’ + 19 5;)#50 5(,,9 #50)
+ 4(—d1_2)9po(29“(a96)y— gwgaﬁ)
X d(r—y)o(z—2z),
(@) o
ix”a(y)AB(z) = %“25@55)5(55—3/)5(96—2), (17)
Au(z v o o v va
Azgy))gaﬁ(Z) =309 B_‘Sug 6_559 )6(z—y)o(z—=2),

where we have introduced the symmetrization notation,
5,(,0‘65) = %(62‘5{3 +655§‘), and so on. The Landau-
DeWitt gauge condition should be determined by the
gauge transformations,

(18a)
(18Db)

59;“/ = _gpaal/ea - gvaaﬂea - eaaag,uy )
0A, = —0ue — A, 0" —€"0,A,,

with €* being the infinitesimal parameter of gravita-
tional gauge transformation and e the infinitesimal pa-
rameter of U(1) gauge transformation. Then, the gauge-
fixing functions for photon and graviton fields are

X = 8#0‘#7 (193)

Xu (19Db)

1 K )=
(a%HA — 56@) + 5@”% :
where F;w = 8#121,, - 81,/71# and an overall factor —2/k
is factorized out in (19b) for the convenience of normal-
ization. So the Lagrangian contains the following gauge-
fixing terms,

1 1
Ly = 2—<X#X” - 2—€x2 , (20)

where £ ( () is gauge-fixing parameter for photon (gravi-
ton) field, and will be set to zero at the end of calculation,
as required by imposing the Landau-DeWitt gauge con-
dition.

Now consider the connection-induced terms in the La-
grangian,

1 9, L 990
Leon = _§I‘AaABnguuaOta18 - 51%21—‘9#“9@5 oo huyhaﬂ
—KDY Sa,a,hap, (21)
where
AO v 1 v mleY 1= v
Sl = — g — S FagFo0 4 SFF™ (22)
Sa,le = O FH. (22b)
The ghost part of the Lagrangian is given by
Lon = 70X+ 170X, (23)



where dx and dy, are the changes under gauge trans-
formations with € =  and ¢* = 7, and (1, n*) the
anti-commuting ghost fields.

With these we can sum up all required terms for com-
puting the effective action (10),

SQ = Spm + /d4517 (ﬁcon + ‘Cgf + ‘Cgh) . (24)

The one-loop effective potential will be deduced from
1TrIn(Sq) ., , according to Eq.(10). This has clear di-
agrammatic interpretation. For our purpose we are in-
terested in all the bilinear terms of background photon
field, which correspond to the one-loop self-energy dia-
grams listed in Fig. 2.

(a) @ (b)

0®©°

°D
| Q)

(c) (d) e (o)

FIG. 2: Graviton induced radiative corrections for photon
self-energy: the wavy external (internal) lines stand for back-
ground (fluctuating) photon fields, the double-lines for gravi-
tons, the dotted lines for photon-ghosts, and the circle-dotted
line for graviton ghosts.

We note that among all five diagrams in Fig. 2(a)-(e),
the first two also exist in the conventional BFM or di-
agrammatic calculation (though the present couplings
differ from the conventional ones), but the last three
arise solely from the connection-induced contributions in
the Vilkovisky-DeWitt formulation. We systematically
compute these diagrams using the Feynman rules from
Eq. (24), and only keep the quadratic divergent parts of
the loop integrals,

3(1+
(a) = (TC)RQ(ﬁgw—pupy)Ib (25a)
3+ 3
o) = (-3 -2 R T o)
3+¢§
(C) = ?’4’2(1)29#11_1)#1)1/) IQ’ (25C)
(d) = _I{2(p2glu.v_p‘upv) 127 (25(1)
1
(©) =~ 00— 00 Ta. (25¢)
where the integral
d*k 1
I, = / G (26)

is quadratically divergent by power-counting, though we
need not to specify a regularization of it for the calcula-

tions so far [16]. Summing up all the self-energy contribu-
tions (25a)-(25e), we find that all % poles explicitly can-
cel, which is a consistency check for Vilkovisky-DeWitt
method, and we deduce the net result in the Landau-
DeWitt gauge,

IQQ

(2)+b)+()+(A)+(e) = - (°gu—pp,) T2 (27)
As guaranteed by the Vilkovisky-DeWitt method [8, 9],
this is a fully gauge-invariant result, and now we are free
to regularize the quadratically divergent integral (26) by
placing a physical momentum cutoff A,

A2

T, = —i—
2 1672

(28)
Thus, we can deduce the QED gauge-coupling renormal-
ization,

KA (A% — p?)

- - 29
64m2g2 (29)

under the minimal subtraction scheme, and the corre-
sponding renormalization constant,

K2(A2— p2)

12872 ’ (30)

Zg = 1—

where g(A) = Z,g(p) and g is the renormalization scale.

From Eq. (29) or Eq. (30), we finally derive the gauge-

invariant gravitational power-law correction to the QED
[B-function,

AB(g, 1) = (K*1)g, (31)

6472

which is asymptotically free and gives ag = — in Eq. (2).
There is no logarithmic graviton correction to the gauge
coupling S-function in the absence of cosmological con-
stant [7], since dimensional counting shows that gravita-
tional logarithmic corrections could only contribute to
dimension-6 operators such as (D, F**)? rather than the
standard dimension-4 gauge kinetic term (13). With a
nonzero cosmological constant Ay in (1), the graviton-
induced logarithmic correction can appear [11] since Ag
has mass-dimension equal 2 and thus the product Agx?
provides a proper dimensionless parameter for one-loop
gravitational logarithmic correction. We stress that due
to the nonzero new result in the above Eq.(31), the
graviton-induced leading power-law correction will even-
tually dominate gauge coupling running at high scales and
always drive gauge unification nearby the Planck scale,
irrespective of the detail of all logarithmic corrections.
This will be demonstrated in the next section.

As a consistency check, we have also explicitly used
the DRED method to regularize the quadratical diver-
gence as d = 2 poles (& la Veltman [14]) and then iden-
tify these poles as quadratical divergences at d = 4;



the outcome is the same as our Eqgs.(25)-(27), which
confirms the insight of Einhorn and Jones [16] that the
gauge-invariant quadratical divergence can be extracted
in a regularization-independent way, so long as the spin-
degrees of freedom for the external fields are correctly
preserved.

For comparison, we want to clarify how our above anal-
ysis differs from that of the conventional BFM (or the
equivalent diagrammatical) approach. The latter corre-
sponds to setting all the F; i related connection terms in
Sec. 2-3 vanish. In consequence, only the diagrams (a)-
(b) in Fig. 2 survive, and we find that now they exactly
cancel with each other,

(a) = —(b) = ?)(17”%2(1?29#;19#19”)127

(a) + (b) = 0. (32)

This also agrees to the null result of the conventional dia-
grammatic calculation in the second paper of [7]. Hence,
we have further confirmed that our nonzero power-law
correction in Eq. (31) solely arises from the connection-
induced new contributions to Fig. 2(b)-(e) via the gauge-
invariant Vilkovisky-DeWitt effective action; and this ex-
plains why it was not discovered before.

As one more consistency check of the present calcu-
lation, we have used an another way[l1] to compute
the Vilkovisky-DeWitt effective action in the coordinate
space and with the aid of Wick theorem. Let us define
the photon and graviton propagators,

(a,(z)a,(y)) = Du(z,y), (33a)
(v ()hap(y)) = Dyuvap(@,y), (33Db)
with
Ak ik
D, (z,y) = /We D, (k), (34a)
Doz, y) = / ATk —ira-w p (k). (34b)
pr,aB\ Ly (271')4 pv,af3 .
Thus, we derive the effective action for gauge field,
. . 1, .
iTa = (iS2) — §<Sl> (35)

where S; and Ss are the action terms containing one
and two external fields, respectively. Then we compute
the effective action using the CADABRA package [19], and
deduce the gauge-part,

3k2 1. -
iTa = %12 /d% Fuw P, (36)

corresponding to diagrams in Fig. 2(a)-(c), and the sum
of Egs. (25a)-(25¢). For ghost-part, we derive

. . 1
ilgn = (iS2gn) — 3 <Sl2gh>

52 1.
- _%12 /d% TEw (37)

which corresponds to diagrams in Fig.2(d)-(e), and the
sum of Eqgs. (25d)-(25¢). With these we obtain the full
one-loop effective action,

I = Ta+Tg =

K2A2 1- -,
— 613 /d4x ZFWF“ , (38)

from which we reproduce the same gauge coupling renor-
malization as in (29)-(30) and the same power-law cor-
rection to the 8 function as in (31).

Next, we discuss the extension of the above analysis to
non-Abelian gauge theories coupled to Einstein gravity.
We first note that a non-Abelian gauge theory adds no
more graviton-induced self-energy diagram beyond those
given in Fig.2, except the couplings in these diagrams
may differ from QED. So, let us inspect the possible
change in each diagram of Fig. 2 for the non-Abelian case.

First, Figs. 2(a) and 2(d) contain pure gravitational in-
teractions only, so they remain the same for non-Abelian
theories. Second, Figs.2(b) and 2(e) do not change too,
since both graviton and graviton-ghost carry no gauge-
charge. So both the gauge fields in and outside the loop
must share the same “color” and thus no extra summa-
tion of “color” over the loop gauge-field. Third, Fig. 2(c)
could receive a change due to possible “color” summation
over the gauge-loop. The relevant changes would come
from two places at one-loop level. One is the gauge-fixing
(19b), which contributes a term of the following form,

Fgquaaga% . (39)
Thus, given the two external background gauge-fields
(from Fﬁuﬁ',fg) for Fig.2(c), there is no more summa-
tion over the gauge-indices of the fluctuating gauge-field
in the loop. The other contribution comes from the con-
nection term, namely the first term in (21), which would
contribute to Fig.2(c) via the form,

Fﬁyﬁgaagaﬁ . (40)
This allows a summation over the loop gauge-indices “b”
and enhances the contribution by an overall factor of the
number of non-Abelian gauge fields, which equals N?—1
for the SU(N) gauge group. But our explicit calculation
shows that this connection-induced contribution actually
vanishes for both Abelian and non-Abelian cases. Hence,
the conclusion is that our graviton induced power-law
correction (31) is universal for both Abelian and non-
Abelian gauge theories.

4. GRAVITY ASSISTED GAUGE UNIFICATION

Gauge coupling unification is a beautiful idea that sug-
gests the three apparently different gauge couplings of



the SM (as measured at low energies) would converge to a
single coupling of the grand unification (GUT) group [20]
at high scales. The evolutions of gauge couplings from
low scale to GUT scale are conventionally governed by
the renormalization group eqtaions (RGEs) with loga-
rithmic running [21]. But the precision data show that
logarithmic evolutions of the three gauge couplings do
not exactly converge for the SM particle spectrum [22],
while the convergence works fine in the minimal super-
symmetric standard model (MSSM) with one-loop RG
running. But more precise numerical analyses includ-
ing two-loop RG running reveal that even in MSSM the
strong gauge coupling as does not exactly meet with
the other two at the GUT scale as its value is smaller
than (aq, ay) by about 3%; so it is necessary to care-
fully invoke the model-dependent one-loop threshold ef-
fects [23]. Tt was also argued that the gravity-induced ef-
fective higher dimensional operators can generate uncer-
tainties larger than the usual two-loop effects of MSSM
and thus significantly alter the gauge unification [24].

With the gauge-invariant gravitational power-law cor-
rections (31), we can resolve running gauge coupling
a;(p) = g2(u) /47 from the RGE (2),

676#2 efc,ug bO'L' /“2 dx - (41)
— ) e
a; () o) Am J2
lag|r? 1

with ¢ = =

(4m)2  4rM3’

So we further deduce,

ai(ﬂo)‘f—c“2

a;(p) = - " (42a)
e—cﬂg + bOIOL.E#o) Iﬁ; dzwefcz
(1o) T
a; (1 exp[— - 2}
MM (42b)

R Iy
where for the estimate in (42b) we have kept in mind
that po << Mp (such as the choice of py = My be-
low), and we also expanded the exponential integral for
pw < VArMp ~ 4.33 x 10" (which holds for most en-
ergy region in Fig.3). Eq.(42b) explicitly shows that
the evolution of any gauge coupling «;(x) will be expo-

nentially suppressed by exp [— , which dominates

the running behavior for high scales above O(1072Mp) .
Hence, the universal gravitational power-law corrections
will always drive all gauge couplings to rapidly converge
to the UV fized point at high scales and reach unification
around the Planck scale, irrespective of the detail of their
logarithmic corrections and initial values. This feature is
numerically demonstrated in Fig. 3 by using the evolution
equation (42a).

In Fig.3(a)-(b), we have analyzed the gauge cou-
pling runnings for both the SM and the MSSM, where
the conventional coefficients by; in the one-loop RGEs
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FIG. 3: Gravity assisted gauge unifications in the SM
[plot-(a)] and in the MSSM [plot-(b)]. In each case the
graviton-induced universal power-law runnings become dom-
inant above 10'® GeV and always drive three gauge couplings
to rapidly converge towards the UV fixed point, nearby the
Planck scale.

are, (bo1, boz, boz) = (—%, 1—69, 7) for the SM and
(bol, bOQ, bog) = (—%, —1, 3) for the MSSM. We have
also input the initial values, a; ' = 59.00+0.02, ay ' =
29.57 + 0.02, and az' = 8.50 &+ 0.14, at the Z-pole
1o = My [22).

For the graviton-induced one-loop S-function (2) with
ag given in (31), we note that at the Planck scale
= Mp, the loop-expansion parameter, (fTo)z(nQ,uz) =

Z—;% = 22 = 0(107"), is still fairly small, and the
z
condition ﬁ]\‘}—i < 1 holds for pu < v4rMp ~ 4.33 x
P

10'? GeV, which is better than the naive expectation.
Fig.3 shows that above 10'? GeV the gauge couplings
rapidly converge due to the exponential suppression in
(42a); and quite before approaching the UV fixed point
the three curves become indistinguishable for «a; < 0.01
(SM) and «; < 0.02 (MSSM), corresponding to a scale
of (5—6) x 10" GeV which is slightly above /47 Mp
but clearly below 102° GeV. For the perturbative one-



loop running of gauge couplings, the renormalization of
%2 belongs to higher order effect here and is thus not in-
cluded. One may concern the running behavior of x? for
scales above V47 Mp and related higher order effects. It
is useful to note that there are clear evidences support-
ing Einstein gravity to be asymptotically safe via the
existence of nontrivial UV fixed point in its RG flow, so
it may be UV complete and perturbatively sensible even
beyond the Planck scale [25][26]. To be conservative, we
would consider the one-loop prediction of Fig. 3 as an in-
structive extrapolation of the Einstein gravity, since this
provides an encouraging insight on the important role
of gravity for realizing the gauge unification, and should
strongly inspire more elaborate investigations along this
direction.

With these said, we make a few more comments.
Fig. 3(a) shows that for the SM gauge coupling evolu-
tions, despite their familiar non-convergence in the region
of 1013717 GeV, the three couplings do unify around the
Planck scale. For the MSSM as shown in Fig.3(b), one
needs not to worry about the model-dependent threshold
effects or the two-loop-induced non-convergence around
the scale of 10'6 GeV, it is quite possible that the GUT
does not happen around the scale of 10'6 GeV, as in the
SM case. Instead, the real GUT would be naturally re-
alized around the Planck scale, and thus is expected to
simultaneously unify with the gravity force as well. This
also removes the old puzzle on why the conventional GUT
scale is about three orders of magnitude lower than the
fundamental Planck scale. Furthermore, the Planck scale
unification helps to sufficiently postpone nucleon decays,
which explains why all the experimental data so far sup-
port the proton stability. In addition, this is also a good
news for various approaches of dynamical electroweak
symmetry breaking [27], such as the technicolor type of
theories, which often invoke many gauge groups with new
strong forces at the intermediate scales and makes one
worry about whether a gauge unification could ever be
realized at certain high scales in these theories. Fortu-
nately, the universal gravitational power-law running for
all gauge couplings found above should ensure a final uni-
fication around the Planck scale.

5. GRAVITATIONAL CORRECTION TO HIGGS
BOSON COUPLING AND MASS

Without losing generality, we first consider a real scalar
field which minimally couples to Einstein gravity,

So = [atev=g [ ¢ 0,00,6-V(9)|,  (43)

where V/(¢) is the scalar potential, V = Im?¢? + %¢%,
with m? > 0 (m? < 0) corresponding to the unbro-
ken (broken) phase. To compute the effective potential

of scalar field, we expand the graviton and scalar fields
around their backgrounds,

o+o. (44)

We impose the Landau-DeWitt gauge condition for the
gauge-fixing,

1 1
= —(n, —Zh,
‘Cgf 2<< 287 92

Then, we derive the connection-induced terms in the
graviton-scalar sector of the Lagrangian,

2
200,6) . (@)

Econn 57(]“”1"3’;;% haﬁhpa _ Sﬂuyrguu ¢2
—HsyasF%sb Py (46)
with
RS BN § R
a0 =~ 60+ 51 (50,6076~ V(3)|. (47a)
27 27 Aog
So = —0%6 —m?6 — 25", (47b)

In (46) the graviton-field connection 'y Y g,e WAas given
in Eq. (17), and the scalar-field related connections are,

2

v (%) K
FZ(UW(Z) 4 gm,5(.’£—y)5($c—z)7 (48&)
z 1 ..
Figygng) = 79" 0(@—y)d(z=2), (48b)
é(2) Jap ()
Do = Lotpgmz = 0 (48¢)
which are derived from the metrics G¢(I)¢(y) —

V=gd(x—y) and Gy ()4 ,(y» [as in Eq.(16)]. The
Feynman diagrams for the graviton-induced scalar self-
energy corrections and quartic vertex corrections are
shown in Fig.4 and Fig. 5, respectively.

\ [}
. ‘g

FIG. 4: Graviton-induced self-energy for scalar field: dashed-
line is fluctuating scalar field, double-wavy-line denotes gravi-
ton, and circle-dotted-line depicts graviton-ghost.

For the scalar self-energy corrections, we compute the
quadratic divergent part for each diagram in Fig. 4,

Fig.4(a) = B/\ + K2 (% - 4—1<) P — —n2m2} T,, (49a)



Graviton-Induced Conventional Connection-Induced Sum (Our Results)
Corrections Approach only (from VDA) (Landau-DeWitt ¢ — 0)

Fig4(a) 0 I D im? E— 2 — w2
Fig.4(b) — (34 2¢)m? 0 —3m?
Fig.4(c) ¢’ (—1+ £)p? (—1+ 2)p°
Fig.4(d) 0 p? p?

T2 - 3+20m? P’ — gm’ 5 (P — 26m?)
Fig.5(a) 0 -1 -1
Fig.5(b) —(3+20)A 0 -3\

ry —(3+20)A -1 LA

TABLE I: Graviton-induced power-law corrections to scalar self-energy and quartic vertex: Summary of the comparison between
the conventional approach (with vanishing connection and with general gauge-parameter ¢) and Vilkovisky-DeWitt approach
(VDA) (with nonzero connection, and in Landau-DeWitt gauge with ¢ — 0 in the end). In each entry of the contribution, a
common factor k2T, is factorized out. Our summed results of I's and T's on the 3rd column agree with Egs. (51a)-(51b).

Fig.4(b) = —3k*m?* I, (49b)
Fig.4(c) = (—1 + i) K*p? Iy, (49¢)
Fig.4(d) = k?p* Ty, (49d)

where the A-term in (49a) comes from the scalar quar-
tic self-interaction alone, which we have included for the
comparison with graviton induced corrections and for the
convenience of analysis.

DX K >R XK
(b) (c) (d)

(a)
YK X X
() (f) (8) (h)

FIG. 5: Graviton-induced corrections to quartic scalar vertex:
dashed-line is fluctuating scalar field, double-wavy-line de-
notes graviton, and circle-dotted-line depicts graviton-ghost.

For the graviton-induced vertex corrections in Fig. 5,

From Egs. (51a)-(51b), we derive the renormalization
for scalar coupling, A(u) = ZgZ)Tl/\(A), with the fol-

only the first two diagrams have quadratical divergence,

1
Fig.5(a) = —Z)\K2I2, (50a)

Fig.5(b) = —3\k?Zs, (50b)
and all other diagrams contain logarithmic divergence at
most.

Summing up relevant contributions we deduce the two-
point proper self-energy and four-point proper vertex for
scalar field,

1 1

Iy (p) = 5)\ + g(p2 —26m*)k? |1z, (51a)
13,

Ty(p) = —iX— Z)\/-i Iy, (51b)

where we do not include the graviton-induced logarithmic
divergent terms (as in [12]) because they are negligible as
compared to the dominant power-law corrections. Note
that the sum of (49a)-(49d) explicitly proves the exact
cancellation of the 1 gauge-parameter poles, which is a
consistency check of our Landau-DeWitt gauge calcula-
tion.

To fully understand the results (51a)-(51b), we have
compared them with those in the conventional BFM
(or the equivalent diagrammatical) approach where all
connection-induced new terms are set to zero. The find-
ings are summarized in Table-1.

lowing renormalization constants,

1 2(2_

Zy = 14—
o = Lt 1o



13
Zy = 14+ ——k*(A? - 42,
Iy

o (52b)

under the minimal subtraction scheme. Then, with (52)
we compute the graviton-induced scalar -function,
ABOVB) = + g (5?), (59)
7T
which is not asymptotically free, contrary to the gauge
coupling S-function (31) we derived earlier. The pure
scalar loop correction is logarithmic divergent and its
renormalization gives the usual non-asymptotically free
scalar S-function [y = —l—% .
From the two-point proper self-energy (51a), we fur-
ther perform the renormalization for scalar mass in the
on-shell scheme, which fixes the mass counter term,

om? = 32% (—/\ + 2745m2f$2) A?, (54)
T

where we have defined the renormalized mass, m? =
m3 — dm?, and also included the contribution from the
pure scalar loop. Comparing the two terms on the right-
hand-side of (54), we note that the graviton-induced
quadratical divergence is actually much softer since the
product k?A? = 167(A/Mp)? = O(10?) for an ultravio-
let cutoff A ~ Mp.

It is straightforward to extend the above analysis to the
SM Higgs boson, since graviton coupling to scalar fields
is universal. Let us write down the SM Higgs doublet,

d = L [mtim (55)
V2 \ o+im, ’

3
where ®T® = o2 +Z 72 and 0 =&+ 6, with 6 being
the SM Higgs boson zind Ty 9,5 the would-be Goldstone
bosons. The Higgs backgrouhd field & will equal the
vacuum expectation value (VEV), v, at the minimum of
Higgs potential.

Consider the SM Higgs potential, V = m?(®'®) +
A@T®)?, with m? < 0 and the VEV, v = /—m2/\.
Then we recompute the gravitational power-law correc-
tions to Higgs boson self-energy and quartic vertex in
Fig.4-5, and deduce the following,

1.1
Lpa(p) = At 5(]?2 —8m?*)K*| I, , (56a)
Lpa(p) = =i\ —24\% T . (56b)

With these we derive the graviton-induced contributions
to the Higgs boson -function and the Higgs mass counter
term,

ABOB) = oy (2%, (57a)

Sm (—12X + Tm¥ k%) A (57b)

3272
where my is the physical Higgs boson mass. We see
that (57a) happens to be the same as in (53) while (57b)
has different coefficients from (54). As compared to the
single real scalar case, the changes in the computation
of (57a)-(57b) arise from two sources: (i) the Feynman
rule for the quartic Higgs vertex in the SM has an extra
factor 6 relative to that from the real scalar potential
below Eq. (43); (ii) there are additional Goldstone loops
in the SM which contribute to Fig.4(a) and Fig.5(a).

1200 T

0 1 1 1
10° 102 10 10° 10® 10 102 10" 10% 10'® 107

A (GeV)

FIG. 6: Gravitational power-law corrections to the triviality
bound on the SM Higgs boson mass mj , where the region
above each curve is excluded. The red curve includes the
graviton-induced corrections and the blue curve depicts the
bound with SM interactions alone.

Note that the conventional Higgs [-function in the
SM receives only logarithmic corrections, SBo(\,p) =
+525A?, and is not asymptotically free. So, with (57a)
we can write the summed Higgs 3 function,

ﬂ()\a ,LL) = BO/\Q + ELO/\HQ:LL2 ) (58)
with (by, ) = (522, 522) > 0. Solving (58) we deduce
the running Higgs coupling A(u),

R L b /M T
Aw) Ag) o z

We see that when the right-hand-side (RHS) of (59) van-
ishes, the renormalized coupling A(u) blows up at the
Landau pole u = Ap,

_ A
—1 7 7(1—0/{2#2 £ K
A (ko) = boem =0 e
m

0

2,2 dx

r
l\)|c

— 60

= (o0)
This means that the SM as an effective theory must have
an UV cutoff A < Ar. For a given Higgs boson mass
m2, = 2X(my)v?, let us set py =my. Thus, from (60)
we can derive the triviality bound for Higgs boson mass,

-1
20?2 a A d
m?{ < %670“27”%1 l/m 670“29”2%‘| , (61)

0 H



where e2%°™mi ~ 1 holds to high accuracy due to the

~ 2
. a, 2 92 3 My . .
tiny factor Zs*mi = ;—Mg ~ (0. It is clear that in the

ag — 0 limit, the condition (61) reduces to the familiar
triviality bound in the pure SM [28],
A? 8m2v?

2
meyIn — <
H m?{ 3

(62)

Keeping this in mind, it is instructive to rewrite our
graviton-corrected triviality bound (61) as follows,

A? 8mr2v?

2ln— < ——r % 63
mEME S A+ X)) (63a)
A _
d A
X z/ [670“29”2—1] /2 >0, (63D)
m x My

H

where an overall factor 3% ™% ~ 1 on the RHS of
(63a) is safely ignored. We find that, because the inte-
gral X > 0 generally holds, the gravitational power-law
corrections always reduce the RHS of (63a), and thus
further tighten the triviality bound relative to (62) of the
pure SM. The graviton-induced corrections play a dom-
inant role to enhance the triviality bound for the cut-
off scale A ~ Mp, as clearly shown in Fig.6. A sys-
tematical expansion of the present section (including the
power-law corrections to Yukawa couplings) will be given
in Ref.[13].

6. CONCLUSIONS

The fundamental gravitational force universally cou-
ples to all the SM particles and can be described by
the well-defined perturbation expansion in the modern
effective theory formulation [3]. The Vilkovisky-DeWitt
method [8] profoundly modifies the conventional BFM,
and provides the manifestly gauge-invariant effective ac-
tion for reliably computing quantum gravity effects. In
this work, we used the Vilkovisky-DeWitt method to de-
rive the first gauge-invariant nonzero gravitational power-
law corrections to the running of gauge couplings. We
found the gravitational power-law corrections to be uni-
versal, making both Abel and non-Abel gauge couplings
asymptotically free [cf. Eq. (31) and analyses at the end
of Sec.3]. We have demonstrated that the graviton-
induced power-law runnings always drive the three SM
gauge forces toward to the UV fixed point, reaching fi-
nal unification around the Planck scale and irrespective
of the detail of logarithmic corrections (cf. Fig.3). This
raises the conventional GUT scale by three orders of mag-
nitude, and opens up a natural possibility of simulta-
neous unification of all four fundamental gauge forces
at the Planck scale. We further analyzed the power-
law corrections to the S-function and mass of the SM
Higgs boson [cf. Egs. (57a)-(57b)]. We found that the
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graviton-induced scalar S-function is not asymptotically
free, and therefore further tightens the triviality bound
on the Higgs boson mass, as shown in Eq. (63) and Fig. 6.
Further extensions of the present analysis for computing
the power-law corrections will be given elsewhere [13].
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