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Gravitational Correction to Running of Gauge Couplings
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We calculate the contribution of graviton exchange to the running of gauge couplings at lowest non-
trivial order in perturbation theory. Including this contribution in a theory that features coupling
constant unification does not upset this unification, but rather shifts the unification scale. When
extrapolated formally, the gravitational correction renders all gauge couplings asymptotically free.
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The straightforward framework for quantum gravity—
general relativity quantized for small fluctuations around
flat space—is a famously nonrenormalizable quantum
field theory [1, 2, 3, 4]. Nevertheless, this framework
is appropriate for describing interactions at energies and
momenta below the Planck scale MP ≡

√

~c/GNewton ≈
1.4×1019 GeV/c2 when treated as an effective low-energy
theory. Indeed, if one makes subtractions to normalize
physical couplings at an energy scale E0 well below MP

in such a way as to enforce the Einstein-Hilbert action of
general relativity at the classical level with minimal cou-
plings and a vanishing (or very small) cosmological term,
then quantum corrections to this classical action at scale
E will occur with coefficients containing positive powers
of (E −E0)/MP, a small number. That procedure is the
implicit foundation for practical use of classical general
relativity as a model of nature despite the existence of
quantum mechanics. It therefore underlies an enormous
range of successful physical and astrophysical applica-
tions. Only the classical theory really comes into play in
those applications, because the quantum corrections are
quantitatively small. Thus, the conceptual framework
of effective field theory provides a sophisticated rational-
ization for proceeding naively in applying the classical
theory.

Still, as Donoghue has emphasized [5], calculating cor-
rections to the classical theory is a problem of method-
ological interest. Moreover, quantitative considerations
concerning interactions at ultra-high energy scales, per-
haps approaching the Planck scale, are important in as-
sessing the possibility of gauge theory coupling unifica-
tion [6, 7]. Also, the size of gravitational corrections, in
comparison to the leading classical term, give an objec-
tive indication for the characteristic scale for the onset
of quantum gravity phenomenology. With these motiva-
tions, we consider here the one-loop (that is, first non-
trivial order in perturbation theory) gravitational correc-
tion to running of gauge theory couplings.

We will perform this calculation directly in the frame-
work described above. Any would-be fundamental theory
of quantum gravity should reproduce the same result in
the limit of the physical scenario considered here, which
is bosonic gravity in a four dimensional Minkowski back-
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FIG. 1: A typical Feynman diagram for a gravitational pro-
cess contributing to the renormalization of a gauge coupling
at one-loop. Curly lines represent gluons. Double lines repre-
sent gravitons. The three-gluon vertex � is proportional to g,
while the gluon-graviton vertex • is proportional to E/MP.

ground, with general matter and gauge sectors, at en-
ergies below the Plank scale. Related calculations have
been done in string theory [8, 9], but this brings in several
additional structures simultaneously, and we have found
the results difficult to compare.

Form of the correction.—The character of the cor-
rection can be determined on very general grounds.
The one-loop Feynman diagrams of interest involve a
gluon vertex dressed by graviton exchange (See Fig. 1).
Alternatively, one could calculate the running coupling of
a gluon to a test “matter” field. Gauge invariance (i.e.,
universality of the gauge coupling) implies that the same
result must be obtained. This consideration highlights a
cancellation between vertex and wave function renormal-
ization, guaranteed by Ward identities, as is familiar in
QED.

Since the gauge boson vertex has strength g and gravi-
tons couple to energy-momentum with a dimensional
coupling ∝ 1/MP, dimensional analysis implies that the
running of couplings in four dimensions will be governed
by a Callan-Symanzik β function of the form

β(g, E) ≡ dg

d lnE
= − b0

(4π)2
g3 + a0

E2

MP
2 g, (1)

where the first term includes the familiar non-
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gravitational contribution, and the second term includes
the gravitational contribution. Since gravitons carry no
gauge charge, b0 has the same value it had in the absence
of gravitation, as determined by the matter content and
the gauge group. Detailed calculation is required to de-
termine the numerical value of the coefficient a0.

Even before knowing the value of a0, much phe-
nomenology can be extracted from the form of Eq. (1).
The equation can be integrated to yield

ea0E2/MP
2 (4π)2

g(E)2
− ea0E2

0
/MP

2 (4π)2

g(E0)2

= b0

∫ E2

E2

0

ea0y/MP
2 dy

y
. (2)

This reduces, of course, to the familiar logarithmic run-
ning of inverse couplings in the limit a0 → 0 (or MP →
∞). Corrections to the familiar result will be very small
for E, E0 ≪MP.

The value of a0 is manifestly independent of the gauge
interaction involved. So, if we consider several gauge
couplings gi, with different bi

0, the condition that they
unify at a common value g(EU) is

(4π)2

gi(E0)2
− (4π)2

gj(E0)2

bj
0 − bi

0

= e−a0E2

0
/MP

2

∫ E2

U

E2

0

ea0y/MP
2 dy

y
(3)

for all choices of i and j. In particular, the left-hand
side of Eq. (3) must be independent of the choice of i, j.
Since that combination of initial couplings and renormal-
ization group coefficients is not affected by the gravita-
tional correction, the unification constraints remain un-
changed. However, the scale of unification and the value
of the common coupling at unification do change, as we
shall now discuss.

Comparing the unification condition with and without
the gravitational correction, and taking E2

0/MP
2 → 0, we

see that the relationship between the uncorrected unifi-
cation energy E∗ and the corrected unification energy EU

is

lnE2
∗ = lnE2

U + a0
E2

U

MP
2 . (4)

If E∗ ≪MP, the self-consistent correction is

E2
U ≈ E2

∗

(

1− a0
E2

∗

MP
2

)

. (5)

In standard (quasiminimal) unification schemes we find
that E∗ is smaller than MP by roughly 3 orders of mag-
nitude, so this approximation is appropriate, but the cor-
rection itself is of no practical importance. On the other
hand, it is widely viewed as disturbing to have the sepa-
ration of scales E∗ ≪MP. Theories that address this is-
sue will inevitably bring in the gravitational correction—
which, if a0 happens to be negative, helps to close the
gap.

The value of the coupling at unification is modified
according to

ea0E2

U
/MP

2 1

g(EU)2
=

1

g∗(E∗)2
, (6)

where g∗ is the running coupling as determined by Eq.
(1) with a0 → 0. For E∗ ≪MP,

g(EU)2 ≈
(

1 + a0
E2

∗

MP
2

)

g∗(E∗)
2. (7)

Method of calculation.—The algebra required to eval-
uate a0 in any straightforward way is formidable. We
document algebraic details elsewhere [10]; here we just
sketch our method and conventions.

The dynamics for a non-Abelian gauge field coupled
to gravity in 3 + 1 spacetime dimensions is given by the
action

S[g,A] =

∫

d4x
√−g

[

1

κ2
R− 1

4g2
gacgbdFa

abFa
cd

]

, (8)

where g = detgab, gab is the spacetime metric, κ2 =
16π/MP

2, R is the Ricci scalar, g is the gauge coupling,

Fa
ab ≡ ∆aAa

b −∆bAa
a + fabcAb

aAc
b (9)

is the field strength, Aa
a is the gauge field, fabc are the

structure constants of the non-Abelian gauge group G,
and ∆a is the spacetime covariant derivative operator.
Since Fa

ab is antisymmetric under a ↔ b, the Christoffel
connections arising from the derivatives in Equation (9)
cancel against each other, so the covariant derivatives
here can be replaced with ordinary derivatives.

We apply the background field method because it is
especially well suited to the specific problem at hand in
ways that we will highlight throughout this section. In
accordance with this method, we seek to evaluate the
effective action for classical field configurations by inte-
grating over quantum fluctuations hab and Aa

a:

eiSeff [g,a] =

∫

DhDAeiS[g,A]. (10)

Here, we have expanded gab as a quantum fluctuation
hab about a background gab,

gab = gab + hab, (11)

and likewise expanded Aa
a as a fluctuation Aa

a about a
background aa

a,

Aa
a = aa

a + Aa
a. (12)

In principle, the classical fields gab and aa
a could satisfy

the classical equations of motion, the coupled Einstein-
Yang-Mills equations. For our purposes, however—that
is, calculating the renormalization of gauge couplings to
one-loop order in perturbation theory—it suffices to set
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gab equal to the flat Minkowski metric while allowing aa
a

to obey the flat-space Yang-Mills equations of motion.
We expand the action (8) in terms of these backgrounds
and fluctuations up to quadratic order in the quantum
fields, since within the background field method, higher-
order terms in the action will only contribute to higher-
loop processes.

If we couple any matter to this system, we do not
expand the matter fields as fluctuations about a back-
ground because we are only interested in the renormal-
ization of the gauge coupling. We still keep terms up to
only quadratic order in quantum fields, however. Since
we are expanding about Minkowski spacetime, matter
terms in the action will give exactly the same contribu-
tion to the one-loop renormalized coupling that they did
in the absence of gravitation.

The action (8) is invariant under diffeomorphisms

δηhab =∂aηb + ∂bηa + ∂aηchcb + ∂bη
chca + ηc∂chab,

(13a)

δηAa
a =Aa

c∂aηc + ηc∂cA
a
a, (13b)

δηaa
a =aa

c∂aηc + ηc∂ca
a
a; (13c)

and under gauge transformations of the group G

δαAa
a =Daαa + fabcAb

aαc, (14a)

δαhab =0. (14b)

(Here, Da = ∂a− iaa
at

a
r when acting on representation r,

and indices are raised and lowered with the background
Minkowski metric.) These gauge symmetries need to
fixed before performing the functional integration (10).
We take the background-covariant gauge-fixing condi-
tions

Ga(A) ≡DaAaa = 0, (15)

C̃a(h, A) ≡Ca(h)− κ2

g2
F aabAa

b = 0, (16)

where

Ca(h) ≡ ∂bh
ab − 1

2∂ah (h ≡ ha
a), (17)

and F a
ab is the appropriate function of classical fields only.

Equation (16) is similar to an Rξ gauge [11]. Here it
is engineered to cancel unpleasant graviton-gluon cross-
terms that would otherwise appear in the expansion. Us-
ing the Faddeev-Popov method [12] in conjunction with
Feynman-’t Hooft weighting factors, the gauge choices
each add gauge-fixing terms to the action as well as
corresponding ghost fields. The ghost fields will not
be expanded about a background and always appear at
quadratic order in the action. So, like matter fields, the
ghost fields contribute to the renormalized gauge cou-
plings exactly as they do in the absence of gravitation.
In particular, this means that the diffeomorphism ghost

does not contribute at all and can be ignored in this back-
ground field calculation.

Not all gluon-graviton cross terms in the action can
be eliminated by the choice of gauge (16) because gluon-
graviton mixing in a vector background is a real physi-
cal effect. In order to evaluate the Gaussian integrals in
Eq. (10) as functional determinants, we formally combine
hab and Aa

a into a “superfield” such that the mixing terms
appear in the off-diagonal entries of the functional matrix
in question. If multiple gauge symmetries are present,
each with its own gauge field and renormalizable cou-
pling, the superfield must be expanded to include each
gluon type, as well as the graviton. The functional ma-
trix then contains cross terms that mix different gluon
types, but these do not ultimately contribute to the cal-
culation at one-loop order. So, to this order, each gauge
coupling gets renormalized independently.

Result.—At this point the Gaussian integrals over the
quantum fields in Eq. (10) are formally defined, but the
resulting functional determinants contain ultraviolet di-
vergences. We subtract them at a reference energy E0.
We find the one-loop effective action at energy scale E is

Seff [g, a] ≈ −1

4

∫

d4x

[

1

g2
+

κ2

g2

3

(4π)2
(E2 − E2

0)

+
b0

(4π)2
ln

E2

E2
0

]

F a
abF

aab, (18)

where b0 depends on the gauge and matter content inde-
pendently of whether gravitation is included in the cal-
culation. Taking E differentially close to E0, we read off
the one-loop β function

β(g, E) = − b0

(4π)2
g3 − 3

κ2

(4π)2
gE2. (19)

Using κ2 = 16π/MP
2, the unknown coefficient in Equa-

tion (1) is now determined to be a0 = −3/π ≈ −0.95.
Comments.—The magnitude |a0| ≈ 1 indicates that

MP =
√

~c3/GNewton does indeed give a fair estimate of
the energy scale for onset of quantum gravity, with no
large numerical factors, for the problem considered here.

At energy scales a few orders of magnitude below MP

the discussion that led to Eqs. (5) and (7) is valid, so
the negative sign of a0 slightly increases EU and slightly
weakens the value of the unified coupling. This helps to
close the gap between the unification scale and the Plank
scale.

Gravitational corrections will cause gauge couplings to
run even in theories that in themselves are exactly con-
formal invariant, that is when b0 = 0. Two notable exam-
ples in four dimensions are pure U(1) electromagnetism
and N = 4 Super-Yang-Mills [13, 14, 15]. For these the-
ories, the exponential integral in Equation (2) has zero
coefficient, so we are left with

e−a0E2/MP
2

g2(E) = constant (20)
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FIG. 2: When gravity is ignored, the three gauge cou-
plings of a model theory evolve as the inverse logarithm of
E at one-loop order (dashed curves). Initial values at 100
GeV were set so that the curves exactly intersect at approxi-
mately 1016 GeV. When gravity is included at one-loop (solid
curves), the couplings remain unified near 1016 GeV, but
evolve rapidly towards weaker coupling at high E.

That is, the coupling runs down from its infrared value
as a Gaussian with a width of order MP. For the pure
U(1) case, this Gaussian running represents the renor-
malized coupling strength of photons to non-dynamical
or heavy sources, and would be the dominant—but still
negligible—source of running in QED far below electron-
positron threshold. For the theoretical “application” of
Eq. (20) to N = 4 Super-Yang-Mills, and in the context
of unification, it would be logical to include the contri-
bution of gravitino-gluino loops to a0, but we have not
calculated that here.

The negative sign of a0 also signifies that the gravi-
tational correction works in the direction of asymptotic
freedom: it causes the couplings to decrease at large en-
ergy. Of course, its effect only becomes quantitatively
important when the energy approaches the Planck scale,
and soon after that one loses the right to neglect higher-
order graviton exchanges. Though neglect of additional
corrections is not justified beyond E ≪ MP, it is enter-
taining to consider some consequences of extrapolating
Eq. (2) as it stands to these energies, taking into account
a0 < 0. The integral on the right-hand side converges
as E → ∞, and so Eqn. (20) arises as an asymptotic
relation. Thus, the effective coupling vanishes rapidly

beyond the Planck scale, rendering the gauge sector ap-
proximately free at these energies. In Fig. 2, we illus-
trate some aspects of the preceding discussion pictori-
ally for an example theory with three gauge couplings
whose low-energy values are chosen such that the bi

0 de-
termined from the matter sector result in a unification
at EU = 1016 GeV. Obviously such a theory mimics the
minimally supersymmetric standard model.
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