Aldebaran bulletin

Týdeník věnovaný aktualitám a novinkám z fyziky a astronomie.
Vydavatel: AGA (Aldebaran Group for Astrophysics)
Číslo 10 – vyšlo 12. března, ročník 8 (2010)
© Copyright Aldebaran Group for Astrophysics
Publikování nebo šíření obsahu je zakázáno.
ISSN: 1214-1674,
Email: bulletin@aldebaran.cz

Hledej

Červený gravitační posuv a kvantová teorie

Petr Kulhánek

Podle obecné teorie relativityObecná relativita – teorie gravitace publikovaná Albertem Einsteinem v roce 1915. Její základní myšlenkou je tvrzení, že každé těleso svou přítomností zakřivuje prostor a čas ve svém okolí. Ostatní tělesa se v tomto pokřiveném světě pohybují po nejrovnějších možných drahách, tzv. geodetikách. kolem sebe tělesa zakřivují prostor a čas. V pokřiveném časoprostoru se potom pohybují po nejrovnějších možných drahách, tzv. geodetikách. Jedním z důsledků zakřivení času v okolí hmotných těles je různý chod hodin v různé vzdálenosti od daného tělesa. Tento jev můžeme měřit buď přímo za pomoci hodin umístěných v různé vzdálenosti od tělesa (Země) nebo pomocí červeného gravitačního posuvuČervený gravitační posuv – závislost frekvence fotonů v důsledku působení gravitačního pole. Fotony opouštějící těleso snižují svou frekvenci (červenají), naopak fotony přibližující se k tělesu zvyšují svou frekvenci (modrají). Jev je způsoben změnou rychlosti chodu hodin v blízkosti hmotných těles.. FotonFoton – základní kvantum energie elektromagnetického záření, polní částice elektromagnetické interakce. Má nulovou klidovou hmotnost a nemá elektrický náboj. Jeho energie a hybnost jsou přímo úměrné frekvenci záření (E = ħω, p = E/c). Stav fotonu zahrnuje také polarizaci, protože jde o příčné vlnění. Kvantování energie poprvé zavedl Max Planck při pokusech o vysvětlení záření černého tělesa. Albert Einstein dal těmto kvantům reálný význam v roce 1905 při vysvětlení fotoelektrického jevu. Samotný název foton poprvé pro tuto částici použil až americký fyzikální chemik Gilbert Lewis v dopise časopisu Nature z roku 1926. opouštějící hmotné těleso (například Zemi) v důsledku změny chodu času (a změny zakřivení prostoru) mění svou frekvenci a červená, tj. prodlužuje svou vlnovou délku, což je měřitelné. V nedávné době se objevila ještě třetí možnost: změnu chodu času lze změřit pomocí změny vlnové délky de Broglieovy vlnyDe Broglieova vlna – vlna, kterou se projevují hmotná tělesa (částice) v mikrosvětě. Každý objekt mikrosvěta se v některých experimentech chová jako vlna a v některých jako částice. Tento dualizmus vln a částic je jedním ze základních projevů kvantového světa. Vlnová délka de Broglieovy vlny je nepřímo úměrná součinu hmotnosti a rychlosti částice. Vlna přidružená objektu má v kvantové mechanice význam amplitudy pravděpodobnosti výskytu částice. chladného atomu cesiaCesium – Caesium, chemický prvek ze skupiny alkalických kovů, vyznačuje se velkou reaktivitou. Cesium je měkký (měkkčí než vosk), lehký a zlatožlutý kov, který lze krájet nožem. Na rozdíl od ostatních alkalických kovů je spolu s rubidiem těžší než voda. Velmi dobře vede elektrický proud a teplo. Cesium bylo objeveno roku 1860 německým chemikem Robertem W. Bunsenem a německým fyzikem Gustavem R. Kirchhoffem.. Tato technika využila poprvé v historii kvantový jev k měření relativistického jevu a ověřila zakřivení času v okolí Země s dosud bezprecedentní relativní přesností 7×10–9. Experiment potvrdil správnost obecné relativity s vysokou přesností a musí být brán v úvahu při pokusech o spojení obecné relativity s kvantovou teorií.

Obecná relativita – teorie gravitace publikovaná Albertem Einsteinem v roce 1915. Její základní myšlenkou je tvrzení, že každé těleso svou přítomností zakřivuje prostor a čas ve svém okolí. Ostatní tělesa se v tomto pokřiveném světě pohybují po nejrovnějších možných drahách, tzv. geodetikách.

Červený gravitační posuv – závislost frekvence fotonů v důsledku působení gravitačního pole. Fotony opouštějící těleso snižují svou frekvenci (červenají), naopak fotony přibližující se k tělesu zvyšují svou frekvenci (modrají). Jev je způsoben změnou rychlosti chodu hodin v blízkosti hmotných těles.

De Broglieova vlna – vlna, kterou se projevují hmotná tělesa (částice) v mikrosvětě. Každý objekt mikrosvěta se v některých experimentech chová jako vlna a v některých jako částice. Tento dualizmus vln a částic je jedním ze základních projevů kvantového světa. Vlnová délka de Broglieovy vlny je nepřímo úměrná součinu hmotnosti a rychlosti částice. Vlna přidružená objektu má v kvantové mechanice význam amplitudy pravděpodobnosti výskytu částice.

Červený gravitační posuv

S pádem komunizmu se rudý posuv přes noc stal červeným, nicméně na jevu samotném se nic nezměnilo. Podle obecné relativity mění foton opouštějící těleso svou barvu a s rostoucí vzdáleností červená. Na tento proces je možné nahlížet mnoha způsoby. Uveďme si alespoň tři z nich:

  • Nejednodušší představu o červenání fotonuFoton – základní kvantum energie elektromagnetického záření, polní částice elektromagnetické interakce. Má nulovou klidovou hmotnost a nemá elektrický náboj. Jeho energie a hybnost jsou přímo úměrné frekvenci záření (E = ħω, p = E/c). Stav fotonu zahrnuje také polarizaci, protože jde o příčné vlnění. Kvantování energie poprvé zavedl Max Planck při pokusech o vysvětlení záření černého tělesa. Albert Einstein dal těmto kvantům reálný význam v roce 1905 při vysvětlení fotoelektrického jevu. Samotný název foton poprvé pro tuto částici použil až americký fyzikální chemik Gilbert Lewis v dopise časopisu Nature z roku 1926. získáte ze zákona zachování energie. Gravitační potenciální energie je záporná a její absolutní hodnota klesá se vzdáleností od tělesa jako 1/r. Na první pohled vzniká poněkud zvláštní situace. Potenciální energie odlétajícího fotonu klesá v absolutní hodnotě, ale skutečná hodnota potenciální energie roste k nule (viz graf). Vzhledem k tomu, že odlétající foton energeticky stoupá v gravitační potenciálové jámě, musí vzhledem k zákonu zachování celkové energie jeho vlastní energie klesat, a proto foton červená.

Červený posuv

Odlétající foton se šplhá k vyšší gravitační energii, jeho vlastní energie přitom klesá.

  • Představte si, že v nějakém místě nad povrchem tělesa upustíte baterku, která vyšle směrem od tělesa světelný záblesk. Souřadnicová soustava spojená s baterkou (volně padajícím tělesem) je inerciálním systémem, kde platí speciální relativita a světlo má stálou frekvenci (frekvenci zdroje). Od vnějšího pozorovatele, ke kterému míří světelný paprsek, se baterka (zdroj světla) vzdaluje, a proto uvidí světlo posunuté Dopplerovým jevemDopplerův jev – změna frekvence vlnění při vzájemném pohybu zdroje a pozorovatele. Přibližuje-li se pozorovatel ke zdroji, naměří vyšší frekvenci, než když se vzdaluje. Může jít o zvukové, elektromagnetické i jakékoli jiné vlnění. Jev poprvé popsal rakouský matematik a fyzik Christiaan Doppler (1803–1853), který část svého krátkého života strávil jako profesor pražské Polytechniky, předchůdkyni dnešního ČVUT v Praze. k červenému konci spektra. Poznamenejme, že celá konstrukce pomocí volně padajícího tělesa (baterky) je možná tehdy, jen pokud platí princip ekvivalencePrincip ekvivalence – gravitační zrychlení těles nezávisí na jejich chemickém složení, gravitační a setrvačná hmotnost těles je vzájemně úměrná, ve vhodné soustavě jednotek shodná. Tento princip se někdy nazývá slabý princip ekvivalence (WEP – Weak Equivalence Principle). Podle silného principu ekvivalence by měly platit i předpoklady speciální relativity, tj. princip konstantní rychlosti světla a neodlišitelnost inerciálních soustav pro mechanické i elektromagnetické děje. Silný princip ekvivalence má za důsledek to, že by gravitační účinky měla mít i hmotnost odpovídající energii elektromagnetického pole. Důsledkem principu ekvivalence je nerozlišitelnost mezi setrvačnými a gravitačními jevy. mezi setrvačnými a gravitačními jevy.
  • Kompletní popis jevu musí samozřejmě vycházet z rovnic obecné relativityObecná relativita – teorie gravitace publikovaná Albertem Einsteinem v roce 1915. Její základní myšlenkou je tvrzení, že každé těleso svou přítomností zakřivuje prostor a čas ve svém okolí. Ostatní tělesa se v tomto pokřiveném světě pohybují po nejrovnějších možných drahách, tzv. geodetikách. a červenání fotonuFoton – základní kvantum energie elektromagnetického záření, polní částice elektromagnetické interakce. Má nulovou klidovou hmotnost a nemá elektrický náboj. Jeho energie a hybnost jsou přímo úměrné frekvenci záření (E = ħω, p = E/c). Stav fotonu zahrnuje také polarizaci, protože jde o příčné vlnění. Kvantování energie poprvé zavedl Max Planck při pokusech o vysvětlení záření černého tělesa. Albert Einstein dal těmto kvantům reálný význam v roce 1905 při vysvětlení fotoelektrického jevu. Samotný název foton poprvé pro tuto částici použil až americký fyzikální chemik Gilbert Lewis v dopise časopisu Nature z roku 1926. je důsledkem různého chodu času a různého zakřivení prostoru v různých vzdálenostech od centrálního tělesa.

Poundův-Rebkův experiment

První měření červeného gravitačního posuvu provedli v roce 1960 Robert PoundGlen Rebka na Harvardské univerzitě. K měření využili věž, která je dodnes součástí Jeffersonovy laboratoře. V originálním článku Pound a Rebka uvádějí, že vzdálenost mezi vysílačem a přijímačem (detektorem) byla 74 stop, což odpovídá výšce 22,55 metru. Na tak malém výškovém rozdílu by podle obecné relativity měla být relativní změna frekvence Δω/ω0 v tíhovém poli ZeměZemě – největší z planet zemského typu. Je jedinou planetou v celém vesmíru, o které víme, že na ní existuje život. Má dostatečně hustou atmosféru, dostatek kapalné vody v povrchových oceánech. Kolem Země obíhá jediný měsíc s vázanou rotací. Při pozorování Země z kosmu vidíme hlavně modrou barvu oceánů. 70 % povrchu Země je pokryto oceány, 30 % tvoří kontinenty. Země sestává z těchto vrstev: jádro, plášť, kůra, troposféra, stratosféra, mezosféra, termosféra. Plášť a kůra jsou odděleny tzv. Mohorovičiæovým rozhraním. Kůra se posouvá a „plave“ na polotekutém plášti. Teplota v centru Země je 5 100 °C, tlak 360 GPa. Magnetické pole Země má přibližně dipólový charakter, je deformováno slunečním větrem do typického tvaru. pouhých 2,5×10–15. Změřit tak nepatrnou změnu frekvence vyžadovalo mimořádnou experimentální zručnost spojenou se značnou zkušeností. Vzhledem k tomu, že měřený rozdíl frekvencí byl Δω = 2,5×10–15ω0, bylo nutné nalézt zdroj s co možná nejvyšší frekvencí. Nakonec byl použit radioaktivní kobalt Co 57 přimísený do železa Fe 57. ŽelezoŽelezo – Ferrum, kovový prvek významně zastoupený na Zemi i ve vesmíru. Má všestranné využití při výrobě slitin pro výrobu většiny základních technických prostředků používaných člověkem. Objev výroby a využití železa byl jedním ze základních momentů vzniku současné civilizace. Fe 57 emitovalo gama fotonyFoton – základní kvantum energie elektromagnetického záření, polní částice elektromagnetické interakce. Má nulovou klidovou hmotnost a nemá elektrický náboj. Jeho energie a hybnost jsou přímo úměrné frekvenci záření (E = ħω, p = E/c). Stav fotonu zahrnuje také polarizaci, protože jde o příčné vlnění. Kvantování energie poprvé zavedl Max Planck při pokusech o vysvětlení záření černého tělesa. Albert Einstein dal těmto kvantům reálný význam v roce 1905 při vysvětlení fotoelektrického jevu. Samotný název foton poprvé pro tuto částici použil až americký fyzikální chemik Gilbert Lewis v dopise časopisu Nature z roku 1926. s přesně definovanou energií 14,4 keVElektronvolt – jednotka energie. Jde o energii, kterou získá elektron urychlením v potenciálovém rozdílu jeden volt, 1 eV = 1,6×10−19 J. V jaderné fyzice se používají spíše větší násobky této jednotky, kiloelektronvolt keV (103 eV), megaelektronvolt MeV (106 eV), gigaelektronvolt GeV (109 eV), teraelektronvolt TeV (1012 eV) nebo petaelektronvolt PeV (1015 eV). V těchto jednotkách se také vyjadřuje hmotnost (E=mc2) a teplota (E=kBT). Jeden elektronvolt odpovídá teplotě přibližně 11 600 K. (frekvence 3,5×1018 Hz). Jako detektor byl použit absorbér tvořený opět vrstvou Fe 57, který rezonančně pohlcoval fotony s toutéž frekvencí. To, zda byly fotony v detektoru pohlceny, a nebo prošly, se zjišťovalo pomocí scintilačního krystalu NaI(Tl) a fotonásobičeFotonásobič – často označováno jako PMT (PhotoMultiplier Tube), vakuová fotocitlivá součástka využívající zesilovacího efektu prostřednictvím sekundární emise na systému elektrod. Prvotní proud, iniciovaný dopadem světla na světlocitlivou vrstvu, fotokatodu, je tak mnohonásobně zesílen. Napětí mezi elektrodami je několik set voltů a je nastaveno tak, aby koeficient sekundární emise při dopadu elektronu na její povrch byl kladný. Fotonásobiče pracují v impulzním režimu.. Krystal měl průměr 7,5 cm a tloušťku 6 mm.

Zdroj a detektor tak byly naladěny na stejnou frekvenci, tj. detektor byl schopen absorbovat fotony jen s frekvencí přesně rovnou vysílané frekvenci. U normálních atomů by zpětný ráz při absorpci fotonu v detektoru ovlivnil přijímanou frekvenci, ale v krystalech díky Mössbauerovu jevuMössbauerův jev – za normálních podmínek dojde při emisi gama kvanta k zpětnému odrazu atomového jádra. Podle velikosti zpětného rázu se mění vlnová délka emitovaného záření. Mössbauer zjistil, že při nízkých teplotách se jádro stává součástí krystalové mříže krystalu a ten absorbuje energii zpětného rázu a emitovaná vlnová délka je proto přesně definovaná. Jev objevil německý fyzik Rudolf Ludwig Mössbauer (*1929), který za tento objev získal v roce 1961 Nobelovu cenu. přebírá zpětný ráz celý krystal, a tak se frekvence absorbovaných fotonů nezměnila. K jediné změně frekvence došlo gravitačním posuvem (červeným, pokud byl zdroj dole a detektor nahoře a modrým při obrácené konfiguraci). Výsledkem gravitačního posuvu je, že by detektor neměl fotony s pozměněnou frekvencí absorbovat. A zde přichází na scénu Dopplerův jevDopplerův jev – změna frekvence vlnění při vzájemném pohybu zdroje a pozorovatele. Přibližuje-li se pozorovatel ke zdroji, naměří vyšší frekvenci, než když se vzdaluje. Může jít o zvukové, elektromagnetické i jakékoli jiné vlnění. Jev poprvé popsal rakouský matematik a fyzik Christiaan Doppler (1803–1853), který část svého krátkého života strávil jako profesor pražské Polytechniky, předchůdkyni dnešního ČVUT v Praze.. Zdroj fotonů byl totiž připevněn k membráně reproduktoru, která s ním pohybovala ve svislém směru sem a tam s frekvencí 10÷50 Hz. Dopplerovým jevem se periodicky měnila frekvence vysílaných fotonů. Vzniklý posuv v určité fázi kompenzoval gravitační posuv a detektor absorboval fotony s nezměněnou frekvencí (resp. změněnou nadvakrát – na jednu stranu gravitačním posuvem a zpět Dopplerovým posuvem). Celá metoda je vlastně upravenou Mössbauerovou spektroskopiíMössbauerova spektroskopie – rezonanční spektroskopická technika. Na vzorek dopadá svazek gama fotonů a detektor sleduje intenzitu prošlého nebo odraženého paprsku v závislosti na energii gama svazku, která se mění v úzkém rozsahu pohybem zdroje pomocí lineárního motoru. Dopplerův jev pak způsobí změnu energie dopadajících fotonů. Svazek gama musí mít energii odpovídající jaderným přechodům zkoumaného vzorku. Metoda je vhodná především pro Fe 57, Co 57, In 129, Sn 119 a Sb 121., která umožňuje přesné určení změny frekvence. Aby nedocházelo k nežádoucímu rozptylu fotonů v atmosféře, procházely fotony mezi zdrojem a detektorem trubicí z mylaru (o průměru 40 cm) vyplněnou héliem.

Výsledek experimentu byl pozitivní, Pound a Rebka potvrdili červený a modrý gravitační posuv s relativní přesností 0,1, tj. 10 %. Při pozdějších modifikacích experimentu se podařilo dosáhnout přesnosti ověření obecné relativity 0,01. Šlo o poslední z velkých testů obecné relativity, který detekoval změnu chodu času způsobenou přítomností Země.

Jeffersonova laboratoř

Dnešní podoba Jeffersonovy laboratoře. V levé části je patrná věž, kde Pound a Rebka prováděli svůj experiment. Podkrovní část budovy je dnes vyšší než v době provádění experimentu. Fotografie Luboš Motl.

Hafelův-Keatingův experiment

Další zajímavý experiment, který zjišťoval změnu chodu času způsobenou gravitací Země, připravili Joseph HafeleRichard Keating v roce 1971. K měření času využili cesiovéCesium – Caesium, chemický prvek ze skupiny alkalických kovů, vyznačuje se velkou reaktivitou. Cesium je měkký (měkkčí než vosk), lehký a zlatožlutý kov, který lze krájet nožem. Na rozdíl od ostatních alkalických kovů je spolu s rubidiem těžší než voda. Velmi dobře vede elektrický proud a teplo. Cesium bylo objeveno roku 1860 německým chemikem Robertem W. Bunsenem a německým fyzikem Gustavem R. Kirchhoffem. hodiny. Kontrolní hodiny byly umístěny na observatoři USNO (United States Naval Observatory). S dalšími hodinami obletěli Zemi ve východním směru a s posledními v západním směru. K obletu využívali běžné dopravní linky a hodiny překládali z letadla do letadla. Čas na hodinách, které se pohybovaly v desetikilometrové výšce, potom porovnaly s časem na kontrolních hodinách. Výsledná hodnota byla dána jak jevy speciální relativity (dilatací času), tak jevy obecné relativity (různým chodem času v různé výšce nad Zemí a změnou chodu času způsobenou rotací Země). Po odečtení jevů speciální relativity se hodiny oblétávající ve východním směru odchýlily od referenčního času o 144 ns, v západním směru o 179 ns. Experiment potvrdil předpovědi obecné relativity s přesností 10 % (10–1). V roce 1976 byl experiment zopakován (Univerzitou v Marylandu) a potvrdil obecnou relativitu s přesností 1 % (10–2). Dnes by bez započtení obecně relativistických jevů bylo například zcela nemožné provozování polohovacího systému GPSGPS – globální polohovací systém, navigace pomocí družic umístěných na oběžné dráze Země. Oficiální název je NAVSTAR GPS (Navigation Satellite Timing and Ranging Global Positioning System). Systém je vyvíjen 30 let a v roce 2007 byla na oběžné dráze umístěna již čtvrtá generace polohovacích družic..

Hafelův-Keatingův experiment

Dobové fotografie z přípravy hodin a z jejich nakládání do letadla. Hodiny prý měly
vlastní letenku a dokonce i sedadlo. Zdroj: B. Crowell (General relativity, 2009).

Balistický experiment – Gravity Probe A

Prvním velmi přesným experimentem na měření gravitačního posuvu byl balistický let sondy Gravity Probe A v roce 1976. Na přípravě experimentu se podíleli odborníci ze SAOSAO – Smithsonian Astrophysical Observatory. Spolu s HCO (Harvard College Observatory) vytvářejí gigantické vědecké centrum CfA (Harvard-Smithsonian Center for Astrophysics). a NASANASA – National Aeronautics and Space Administration, americký Národní úřad pro letectví a kosmonautiku, byl založen prezidentem Eisenhowerem 29. července 1958. Jde o instituci zodpovědnou za kosmický program USA a dlouhodobý civilní i vojenský výzkum vesmíru. K nejznámějším projektům patří mise Apollo, která v roce 1969 vyvrcholila přistáním člověka na Měsíci, mise Pioneer, Voyager, Mars Global Surveyor a dlouhá řada dalších.. Vědecký tým řídili Martin Levine a Robert Vessot. Sonda měla hmotnost 100 kilogramů a byla vynesena z Wallopových ostrovů (Virginie) nosnou raketou Scout do výšky 10 000 km. Sonda záměrně nedosáhla únikové rychlosti, a tak po dosažení maximální výše padala zpět směrem k zemi a dopadla do Atlantického oceánu. Na palubě byl vodíkový maserMASER – Microwave Amplification by Stimulated Emission of Radiation. Zařízení, které zesiluje elektromagnetické záření pomocí stimulované emise v mikrovlnném a rádiovém oboru. Obdobně funguje v optickém oboru LASER. Teoreticky byl maser předpovězen v roce 1952 Nikolajem Basovem a Alexandrem Prochorovem. Tato práce však byla zveřejněna až v roce 1954. Mezitím byl v roce 1953 nezávisle realizován Charlesem Townesem, Jamesem Gordonem a Herbertem Zeigrem na Kolumbijské univerzitě. Masery se využívají jako velice přesné etalony frekvence, například v atomových hodinách, jako zesilovače vynikají velice nízkým šumem, díky čemuž mohou být použity například k zesílení signálu od velice vzdálených sond, které vysílají na relativně malých výkonech nebo k radiolokaci. Nezastupitelnou roli mají rovněž v radioteleskopii. Klasické konstrukce maserů jsou poměrné náročné na provoz (vakuové systémy, magnetické stínění, silné elektromagnety nebo chlazení tekutým héliem). V roce 2012 byl zkonstruován pulzní a v roce 2018 kontinuální maser, který pracuje za pokojové teploty bez nutnosti magnetického stínění a bez použití vnějšího magnetického pole., který sloužil jako zdroj radiového signálu s přesnou frekvencí (jako přesné hodiny). Za pomoci retranslátoru byl signál z průběhu celého letu přijímán na povrchu Země. Po odečtení Dopplerova jevu zůstal jen modrý gravitační posuv způsobený cestou signálu ze sondy na Zem. Poprvé se podařilo ověřit předpověď obecné relativity s relativní přesností 0,01 % (10–4).

Gravity Probe A

Gravity Probe A. Nalevo je schéma sondy, napravo nesou Martin Levine
a Robert Vessot vodíkový maser. Zdroj: NASA/MSFC.

De Broglieovy vlny

Nejnovější způsob měření červeného gravitačního posuvuČervený gravitační posuv – závislost frekvence fotonů v důsledku působení gravitačního pole. Fotony opouštějící těleso snižují svou frekvenci (červenají), naopak fotony přibližující se k tělesu zvyšují svou frekvenci (modrají). Jev je způsoben změnou rychlosti chodu hodin v blízkosti hmotných těles. je zcela revoluční. Měří gravitační posuv pomocí kvantového jevu na výškovém rozdílu pouhých 0,1 mm! Ústřední postavou nové metody je Steven Chu, nositel Nobelovy ceny za laserové ochlazováníLaserové ochlazování – technika využívající k ochlazování atomů laserového světla s vlnovou délkou nepatrně nižší než je charakteristický elektronový přechod v atomu. Toto „podladění“ má za následek, ža atomy absorbují větší množství fotonů, pokud se pohybují směrem ke zdroji, než pokud se pohybují od zdroje. Při interakci s fotonem atom ztrácí odpovídající hybnost ve směru zdroje světla. Při následném vyzáření fotonu sice hybnost opět získá, ale v náhodném směru. Zpravidla se používá šest laserů ve směru a proti směru tří souřadnicových os. Ať se atom vydá kamkoli, vždy proti němu bude svítit laser se správně posunutou frekvencí. Mnohonásobným opakováním lze shluk atomů ochladit na nanokelvinové teploty. V roce 1997 byla za tento objev udělena Stevenovi Chuovi, Claudeovi Cohen-Tannoudjimu a Williamovi Philipsovi Nobelova cena za fyziku.. Chu byl dlouhá léta ředitelem proslulé vědecké laboratoře LBNLLBNL – Lawrence Berkeley National Laboratory. Jedna z nejproslulejších světových laboratoří založená v roce 1931 Ernestem Orlando Lawrencem, nositelem Nobelovy ceny za fyziku pro rok 1939 za vynález cyklotronu. Laboratoř je řízena Kalifornskou univerzitou a dodnes v ní pracovalo 12 nositelů Nobelovy ceny.. Napadlo ho, že k měření červeného posuvu by se namísto elektromagnetických vln mohly využít de Broglieovy vlnyDe Broglieova vlna – vlna, kterou se projevují hmotná tělesa (částice) v mikrosvětě. Každý objekt mikrosvěta se v některých experimentech chová jako vlna a v některých jako částice. Tento dualizmus vln a částic je jedním ze základních projevů kvantového světa. Vlnová délka de Broglieovy vlny je nepřímo úměrná součinu hmotnosti a rychlosti částice. Vlna přidružená objektu má v kvantové mechanice význam amplitudy pravděpodobnosti výskytu částice.. Je přece jedno, zda čas měříme pomocí elektromagnetických kmitů nebo pomocí de Broglieových vln. Tyto vlny mají podstatně vyšší frekvenci, například pro cesiovýCesium – Caesium, chemický prvek ze skupiny alkalických kovů, vyznačuje se velkou reaktivitou. Cesium je měkký (měkkčí než vosk), lehký a zlatožlutý kov, který lze krájet nožem. Na rozdíl od ostatních alkalických kovů je spolu s rubidiem těžší než voda. Velmi dobře vede elektrický proud a teplo. Cesium bylo objeveno roku 1860 německým chemikem Robertem W. Bunsenem a německým fyzikem Gustavem R. Kirchhoffem. atom ochlazený Chuovou metodou má de Broglieova vlna frekvenci 3×1025 Hz. Myšlenky se ujali Achim Peters (Humboldtova univerzita) a Holger Müller (UCBUCB – University of California at Berkeley. Požadavky na vznik Kalifornské univerzity pocházejí již z roku 1849, vlastní univerzita byla založena v roce 1866, nejznámější část (UCLA) sídlí v Los Angeles. Berkeleyská část vznikla v roce 1873.) a v únoru 2010 nově interpretovali experimenty Peterse z roku 1997. Tehdy Peters ochladil cesiové atomy Chuovou metodou na pouhých několik miliontin kelvinu a poté jim za pomoci laseru předal svislý impulz a sledoval jejich následný volný pád. Experimenty z roku 1997 měly ověřit princip ekvivalence.

Stejný experiment může ale také sloužit k měření červeného gravitačního posuvu. LaserovýLASER – Light Amplification by Stimulated Emission of Radiation, zesílení světla pomocí stimulované emise záření. Roku 1958 ukázal Charles Hard Townes spolu s Arthurem Leonardem Schawlowem, že je možné zkonstruovat podobné zařízení jako již existující MASER (pracuje v mikrovlnné oblasti) také pro světlo. První laser zkonstruoval Theodore Harold Maiman v roce 1960. Aktivním prostředím byly ionty chrómu v syntetickém rubínovém krystalu. impulz působící na shluk ochlazených cesiových atomů totiž připraví atomy ve směsici dvou stavů. Jeden stav reprezentuje nevychýlené atomy a druhý stav atomy vychýlené pulzem o cca 0,1 mm svisle. Pro cesiové atomy ve vychýleném stavu plyne čas jinak než pro nevychýlené. Za přibližně 0,3 s volného pádu vychýlených atomů se bude čas uplynulý v obou stavech lišit o ×10–20 s. Jde o neuvěřitelně krátký okamžik, ale vzhledem k vysoké frekvenci de Broglieových vln měřitelný za pomoci interference vln z obou stavů. Postačí, aby laserový pulz atakoval cesiové atomy třikrát. Poprvé udělí s 50 % pravděpodobností atomům svislý impulz a atomy se ocitnou v superpoziciSuperpozice stavů – pokud dva stavy představují fyzikálně realizovatelný stav systému, je možná i superpozice těchto stavů. Například kvantově mechanická kočka nemusí být jen živá nebo mrtvá, může být i „obojí zároveň“. Takový stav značíme a|Ž⟩+b|M⟩, kde ab jsou čísla vyjadřující váhu. Pokud na kočce v tomto superponovaném stavu provedeme měření, s pravděpodobností |a|2 ji najdeme živou a s pravděpodobností |b|2 mrtvou. Kvantová superpozice stavů je běžná pro kvantové objekty, například elementární částice nebo atomy. U makroskopických objektů (kočka, člověk) komunikujících s okolím je nemožná. nevychýleného a vychýleného stavu. Atom v nevychýleném stavu se pohybuje na nízké dráze a atom ve vychýleném stavu po vyšší dráze. Druhý laserový impulz způsobí, že atomy na vyšší dráze se začnou přibližovat k těm na nižší. V okamžiku, kdy se setkají, dojde k interferenci de Broglieových vln obou stavů. Za pomoci třetího laserového pulzu lze změřit změnu fáze mezi oběma stavy. V podstatě jde o atomový interferometr mezi dvěma stavy.

Výsledky současných experimentů jsou fascinující – červený gravitační posuv se podařilo změřit s relativní přesností 7×10–9, což je o čtyři řády přesnější než měření sondou Gravity Probe A!

Experiment s de Broglieovými vlnami

Experiment s de Broglieovými vlnami. Zdroj: Nature 463.

Laboratoř

Optická lavice, na které se uskutečnil experiment. Patrná je řada optických elementů.
Zdroj: Damon English, UCB.

Závěr

Poprvé v historii tak byl měřen čistě relativistický jev (červený gravitační posuv, nebo chcete-li změna chodu času v závislosti na vzdálenosti od Země) za pomoci čistě kvantového jevu – interference de Broglieových vln dvou stavů cesiového atomu. Metoda je natolik přesná, že pokud by se podařilo vychýlit cesiové atomy laserovým pulzem o metr, a poté je dalším pulzem vrátit a změřit fázový posun de Broglieových vln, byla by přesnost dostatečná i k detekci gravitačních vln. Pokud jsou uvedené myšlenky správné, rýsuje se na obzoru zcela nová a revoluční metoda detekce gravitačních vln. Ale nepředbíhejme, zatím byla „pouze‟ objevena metoda, pomocí které lze červený gravitační posuv měřit stotisíckrát přesněji než dříve. A to samo o sobě vůbec není málo.

Literatura

Valid HTML 5Valid CSS

Aldebaran Homepage