Quantum Lattice Models & Introduction to Exact Diagonalization

Andreas Läuchli IRRMA – EPF Lausanne

ALPS User Workshop CSCS Manno, 28/9/2004

Outline of this lecture:

□ Quantum Lattice Models **Lattices and Models in general and in ALPS**

 \square Exact Diagonalization (ED) \blacksquare The Method and its applications Ingredients

- \square ED Extensions
	- **Finite Temperature Lanczos Methods**
	- **Contractor Renormalization (CORE)**

Quantum Lattice Models

kagome lattice Volborthite

\Box Infinite Lattices are made out of:

A Unit Cell, containing n "atoms"

Spanning vectors defining the Bravais lattice:

Lattices II

Some Examples:

Square Lattice single site unit cell

Checkerboard Lattice two sites in unit cell

Finite Lattices

The present way in ALPS:

 T_2 Extent is given by multiples of the Bravais vectors T_1 and T_2

For the square lattice: Extent $=6x6$ ⇒ 36 sites

Finite Lattices

In the near future in ALPS:

□ Many Body Lattice Models

□ Single Particle Lattice Models

□ Constrained Models

- **O** Fermionic models:
	- **Hubbard model:**

$$
- t \left(c_{1,\sigma}^{+} c_{2,\sigma} + c_{2,\sigma}^{+} c_{1,\sigma} \right) + U n_{1,\uparrow} n_{1,\downarrow}
$$

 $\circ \phi \phi \Phi$

- \Box Fermionic models:
	- **Hubbard model:**

$$
- t \left(c_{1,\sigma}^{+} c_{2,\sigma} + c_{2,\sigma}^{+} c_{1,\sigma} \right) + U n_{1,\uparrow} n_{1,\downarrow}
$$

■ t-J model: (≈large U limit of the Hubbard model)

$$
-t \mathcal{D}(c_{1,\sigma}^+ c_{2,\sigma}^+ + c_{2,\sigma}^+ c_{1,\sigma}^+) \mathcal{D}
$$

+
$$
J (S_1 \bullet S_2 - 1/4n_1n_2)
$$

$$
O \Phi \Phi
$$

Single Particle Models

 \square Disordered potentials and hoppings ⇒ Anderson Localization

 \Box Hopping phases ⇒ Hofstadter Butterfly

□ Jordan-Wigner transformation \Rightarrow Disordered XX-spin chains

Constrained Models (not yet in ALPS)

Vertex / Ice models:

□ Hardcore-dimer models:

Exact Diagonalization

$H|\Psi\rangle = E|\Psi\rangle$

 \Box Solve the Schrödinger equation for a many body Hamiltonian on a finite system \Rightarrow Standard Eigenvalue problem:

$$
H|\Psi\rangle = E|\Psi\rangle
$$

- \Box Within this approach we can basically simulate any model.
- \Box However due to the exponentially growing computational effort it is most useful where more powerful methods fail:
	- **Fermionic Models in 1D and 2D (no sign problem)**
	- **F** Frustrated Quantum Magnets in 1D/2D/(3D)
	- **Quantum number resolved quantities**
	- Calculation of basically any observable, i.e. complicated dynamics
	- Benchmark for all other methods

Exact Diagonalization – present day limits

\Box Spin S=1/2 models:

40 spins square lattice, 39 sites triangular, 42 sites star lattice Dimension: **up to 1.5 billion basis states**

\Box t-1 models:

32 sites checkerboard with 2 holes 32 sites square lattice with 4 holes Dimension: **up to 2.8 billion basis states**

Π Hubbard models

20 sites square lattice at half filling, 20 sites quantum dot structure Dimension: **up to 3 billion basis states**

□ Holstein models

14 sites on a chain + phonon pseudo-sites Dimension: **up to 30 billion basis states (needs a supercomputer on its own)**

Exact Diagonalization – Ingredients of a code

□ Hilbert space

- Site-Basis represention
- **Symmetries**
- Lookup techniques
- Π Hamiltonian Matrix
	- Sparse Matrix representation (memory/disk)
	- \blacksquare Matrix recalculation on the fly
- □ Linear Algebra / Eigensolver backend
	- **LAPACK full diagonalization (in ALPS)**
	- Lanczos type diagonalization (IETL, in ALPS)
	- More exotic techniques
- Observables
	- Static quantities
	- Dynamic observables

Coding of Basis states

 \Box Representation of basis states in terms of binary numbers (or generalizations thereof):

$$
\upharpoonleft_{1}\downarrow_{2}\ldots>=1_{1}0_{2}\ldots
$$

 \Box In more complicated models like t-J there is no unique or best way to represent the states:

$$
|\uparrow_1 \downarrow_2 O_3 \ldots \rangle = 1_{1,\uparrow} O_{1,\downarrow} O_{2,\uparrow} 1_{2,\downarrow} O_{3,\uparrow} O_{3,\downarrow} \ldots
$$

$$
|\uparrow_1 \downarrow_2 O_3 \ldots \rangle = |1_1 1_2 O_3 \ldots| \otimes |1_1 O_2 \ldots|
$$

charge spin on occ. sites

The inclusion of symmetries in an ED code has two major advantages:

1. Quantum number resolved energies and states. 2. Reduction of the Hilbert space to be diagonalized.

Symmetries in ED II

 \Box U(1) related symmetries:

- Conservation of particle number(s)
- Conservation of total Sz
- \square Spatial symmetry groups:
	- Translation symmetry (abelian symmetry, therefore 1D irreps)
	- Pointgroup symmetries (in general non-abelian)
- \Box SU(2) symmetry
	- Difficult to implement together with spatial symmetries
	- For $Sz=0$ an operation called "spin inversion" splits the Hilbert space in even and odd spin sectors.

Symmetries in ED III

An example of the symmetry reduction factor: 40 sites square lattice S=1/2 Heisenberg model

- \Box The complete Hilbertspace : Dim= $2^{40} = 10^{12}$
- \Box By constraining to Sz=0 : Dim=138*10⁹
- \Box Using spin inversion: Dim=69*10⁹
- \square Implementing 40 translations $\omega = 1.7 * 10^9$
- □ Using all 4 rotations Dim=430'909'650

Linear Algebra in Exact Diagonalization I

 Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst (eds), Templates for the solution of Algebraic Eigenvalue Problems: A Practical Guide . SIAM, Philadelphia, 2000 http://www.cs.ucdavis.edu/~bai/ET/contents.html

 \square Lanczos algorithm:

C. Lanczos, , J. Res. Natl. Bur. Stand. 45, 255 (1950).

Iterative "Krylov"-space method which brings matrices into tridiagonal form. Method of choice in many large-scale ED programs.

- Very rapid convergence.
- Memory requirements between 2 and 4 vectors.
- **Numerically unstable, but with suitable techniques** this is under control (Cullum and Willoughby).
- Easy to implement.

Linear Algebra in Exact Diagonalization II

- □ Jacobi-Davidson Algorithm:
	- E. R. Davidson, Comput. Phys. 7, 519 (1993).
	- Rapid convergence, especially for diagonally dominant matrices (Hubbard model).
	- Varying number of vectors in memory.
	- Often used in DMRG programs as well.
- □ "modified Lanczos" algorithm: E. Gagliano, *et al*. Phys. Rev. B 34, 1677 (1986).
	- actually more like a Power-method, therefore rather slow convergence.
	- needs only two vectors in memory.
	- At each step the approximate groundstate wavefunction is available.
	- Difficult to get excited states.

Lanczos Algorithm I

- 1. Start with a normalized vector $|\phi_1\rangle$
- 2. Apply the Hamiltonian *H:* $a_1:=-\phi_1|H|\phi_1>, b_1|\phi_2:=H|\phi_1>-a_1|\phi_1>$ 3. $a_n := \langle \phi_n | H | \phi_n \rangle$, $b_n|\phi_{n+1}>= H |\phi_n> - a_n |\phi_n> - b_{n-1}|\phi_{n-1}>$

Lanczos Algorithm II

Let's monitor the evolution of $\sigma(T_n)$:

- •Eigenvalues start to converge from the extremal eigenvalues.
- •While converging for excited states one has to be careful as approximate eigenvalues can remain stuck for some time.

Lanczos Algorithm III

What happens once the ground state energy has converged?

Observables in ED

- \square Energy, as function of quantum numbers!
- □ "Diagonal" correlation functions: easy to calculate in the chosen basis, i.e. S^z -correlations, density correlations, string order parameter,...
- □ Off-diagonal correlations: S^x-S^x, kinetic energy
- \Box Higher order correlation functions: dimer-dimer correlations, vector chirality correlation functions, pairing correlations,...
- $□$ Dynamical correlations of all sorts (\Rightarrow talk by D. Poilblanc)
- \Box Note that evaluation of complicated observables can become as important as obtaining the groundstate!
- \Box Note also that in general the precision on correlation functions is not as high as the energy!

Observables in ED, example pictures

 $\langle (S_1 \times S_2)(S_3 \times S_4) \rangle - \langle S_1 \times S_2 \rangle \langle S_3 \times S_4 \rangle$

$$
\langle (c_1^+ c_2 + \text{h.c.})(c_3^+ c_4 + \text{h.c.}) \rangle
$$

 $-\langle c_1^+ c_2 + \text{h.c.}\rangle \langle c_3^+ c_4 + \text{h.c.}\rangle$

Available ED Codes (to my knowledge)

□ ALPS ED Codes (many models, but no symmetries yet) Fulldiag: complete diag. with thermodynamics Sparsediag: sparse matrix Lanczos, only energies.

- □ Jörg Schulenburgs Spinpack, written in C/C++, can do large-scale calculations http://www-e.uni-magdeburg.de/jschulen/spin/
- □ Nishimori's TITPACK, Fortran implementation, widely used in Japan, "cite me" licence. http://www.stat.phys.titech.ac.jp/~nishi/titpack2_new/index-e.html

Extensions of Exact Diagonalization

□ Finite Temperature Lanczos Methods:

□ Contractor Renormalization (CORE):

Extensions of Exact Diagonalization

□ Finite Temperature Lanczos Methods:

- J. Jaklic and P. Prelovsek, Adv. Phys. 49, 1 (2000).
- M. Aichhorn *et al*., Phys. Rev. B 67, 161103 (2003).

Finite Temperature Lanczos Methods

- \Box These methods (FTLM, LTLM) combine the Lanczos method and random sampling to go to larger systems.
- \Box For high to moderate temperatures these methods can obtain results basically in the thermodynamic limit.
- \Box The Low Temperature Lanczos Method can also go to low temperatures to get correct results on a given sample. Finite size effects however persist.
- \Box Like the T=0 ED method it is most useful, where QMC or T-DMRG etc fail, such as frustrated and fermionic models.
- Possibly in ALPS in the not so distant future...

Extensions of Exact Diagonalization

□ Contractor Renormalization (CORE):

- C.J. Morningstar and M. Weinstein, Phys. Rev. D 54 4131 (1996).
- E. Altman and A. Auerbach, Phys. Rev. B 65, 104508 (2002).
- S. Capponi, A. Läuchli and M. Mambrini, cond-mat/0404712, to be published in PRB

CORE – Basic Idea

- \Box Choose a suitable decomposition of your lattice and keep a certain number of suitable states
- \Box Determine the effective Hamiltonian by requiring to reproduce the low energy spectrum of the non-truncated system on small clusters.
- \Box Simulate (or treat analytically) the new effective Hamiltonian.

Contractor Renormalization

How to choose the states to keep?

 \Box Low energy states of the local building block

CORE, some results

Kagome antiferromagnet, keeping only the two doublets of the up-triangles (4 out of 8 states)

The number of nonmagnetic excitations before the first magnetic excitation is drastically increasing with system size. Semi-quantitative agreement ED⇔CORE

