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Outline of this lecture:

 Quantum Lattice Models
 Lattices and Models in general and in ALPS

 Exact Diagonalization (ED)
 The Method and its applications
 Ingredients

 ED Extensions
 Finite Temperature Lanczos Methods
 Contractor Renormalization (CORE)



Quantum Lattice Models

kagome lattice Volborthite
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Lattices

 Infinite Lattices are made out of:
 A Unit Cell, containing n “atoms”

 Spanning vectors defining the Bravais lattice:

T1

T2
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Square Lattice
single site unit cell

Lattices II

Some Examples:

Checkerboard Lattice
two sites in unit cell

T1

T2



28/9/2004 ALPS User Workshop Manno 6

Finite Lattices

The present way in ALPS:

T1

T2 Extent is given by multiples of
the Bravais vectors T1 and T2

For the square lattice:
Extent =6x6
⇒ 36 sites
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Finite Lattices

In the near future in ALPS:

T1

T2 Extent is given by non-collinear
spanning vectors.

For the square lattice:
F1=(6,2)=6T1+2T2
F2=(-2,6)=-2T1+6T2
⇒ 40 sites
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Models

 Many Body Lattice Models

 Single Particle Lattice Models

 Constrained Models
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Many-Body Hamiltonians

 Spin models:
 Heisenberg Couplings (any S):

 Modifications:

easy plane, easy axis anisotropies

single ion anisotropy

higher order spin interactions
(biquadratic, Ring exchange,....)
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Many-Body Hamiltonians

 Fermionic models:
 Hubbard model:
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Many-Body Hamiltonians

 Fermionic models:
 Hubbard model:

 t-J model: (≈large U limit of the Hubbard model)
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Many-Body Hamiltonians

 Fermionic models:
 Kondo lattice model:
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Kondo coupling
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Single Particle Models

 Disordered potentials and hoppings
⇒ Anderson Localization

 Hopping phases
⇒ Hofstadter Butterfly

 Jordan-Wigner transformation
⇒ Disordered XX-spin chains
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Constrained Models (not yet in ALPS)

 Hardcore-dimer models:

 Vertex / Ice models:



Exact Diagonalization
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Exact Diagonalization

 Solve the Schrödinger equation for a many body Hamiltonian
on a finite system ⇒ Standard Eigenvalue problem:

 Within this approach we can basically simulate any model.

 However due to the exponentially growing computational
effort it is most useful where more powerful methods fail:

 Fermionic Models in 1D and 2D (no sign problem)
 Frustrated Quantum Magnets in 1D/2D/(3D)
 Quantum number resolved quantities
 Calculation of basically any observable, i.e. complicated dynamics
 Benchmark for all other methods

!=! EH
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Exact Diagonalization – present day limits

 Spin S=1/2 models:
40 spins square lattice, 39 sites triangular, 42 sites star lattice

Dimension:  up to 1.5 billion basis states

 t-J models:
32 sites checkerboard with 2 holes
32 sites square lattice with 4 holes

 Dimension:  up to 2.8 billion basis states

 Hubbard models
20 sites square lattice at half filling, 20 sites quantum dot structure

Dimension:  up to 3 billion basis states

 Holstein models
14 sites on a chain + phonon pseudo-sites

Dimension:  up to 30 billion basis states  (needs a supercomputer on its own)
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Exact Diagonalization – Ingredients of a code

 Hilbert space
 Site-Basis represention
 Symmetries
 Lookup techniques

 Hamiltonian Matrix
 Sparse Matrix representation (memory/disk)
 Matrix recalculation on the fly

 Linear Algebra / Eigensolver backend
 LAPACK full diagonalization (in ALPS)
 Lanczos type diagonalization (IETL, in ALPS)
 More exotic techniques

 Observables
 Static quantities
 Dynamic observables
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Coding of Basis states

 Representation of basis states in terms of binary numbers
(or generalizations thereof):

           |↑1↓2...>=1102...

 In more complicated models like t-J there is no unique
or best way to represent the states:

|↑1↓2O3...>=11,↑ 0 1,↓ 02,↑ 12,↓ 03,↑ 03,↓ ...

|↑1↓2O3...>=|111203....| ⊗|11’02’...|
charge spin on occ. sites
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Symmetries in ED I

The inclusion of symmetries in an ED code has 
two major advantages:

1.  Quantum number resolved energies and states.
2.  Reduction of the Hilbert space to be diagonalized.
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Symmetries in ED II

 U(1) related symmetries:
 Conservation of particle number(s)
 Conservation of total Sz

 Spatial symmetry groups:
 Translation symmetry (abelian symmetry, therefore 1D irreps)
 Pointgroup symmetries (in general non-abelian)

 SU(2) symmetry
 Difficult to implement together with spatial symmetries
 For Sz=0 an operation called “spin inversion” splits the

Hilbert space in even and odd spin sectors.
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 The complete Hilbertspace : Dim=240 = 1012

 By constraining to Sz=0 : Dim=138*109

 Using spin inversion: Dim=69*109

 Implementing 40 translations Dim=1.7*109

 Using all 4 rotations Dim=430’909’650

Symmetries in ED III

An example of the symmetry reduction factor:
40 sites square lattice S=1/2 Heisenberg model
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Linear Algebra in Exact Diagonalization I

 Lanczos algorithm:
C. Lanczos, , J. Res. Natl. Bur. Stand. 45, 255 (1950).

Iterative “Krylov”-space method which brings
matrices into tridiagonal form. Method of choice
in many large-scale ED programs.
 Very rapid convergence.
 Memory requirements between 2 and 4 vectors.
 Numerically unstable, but with suitable techniques

this is under control (Cullum and Willoughby).
 Easy to implement.

 Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst (eds),
 Templates for the solution of Algebraic Eigenvalue Problems:

 A Practical Guide . SIAM, Philadelphia, 2000
http://www.cs.ucdavis.edu/~bai/ET/contents.html
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 Jacobi-Davidson Algorithm:
E. R. Davidson, Comput. Phys. 7, 519 (1993).

 Rapid convergence, especially for diagonally
dominant matrices (Hubbard model).

 Varying number of vectors in memory.
 Often used in DMRG programs as well.

 “modified Lanczos” algorithm:
E. Gagliano, et al. Phys. Rev. B 34, 1677 (1986).

 actually more like a Power-method,
therefore rather slow convergence.

 needs only two vectors in memory.
 At each step the approximate groundstate

wavefunction is available.
 Difficult to get excited states.

Linear Algebra in Exact Diagonalization II
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Lanczos Algorithm I
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1. Start with a normalized vector |φ1>
2. Apply the Hamiltonian H: 

a1:=<φ1|H|φ1>, b1|φ2>:= H |φ1>- a1 |φ1>
3. an:=<φn|H|φn>,

bn|φn+1>:= H |φn>- an |φn>- bn-1|φn-1>

After n steps:
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Lanczos Algorithm II

Let’s monitor the evolution of σ(Tn):

•Eigenvalues start to
converge from the
extremal eigen-
values.

•While converging
for excited states
one has to be
careful as
approximate
eigenvalues can
remain stuck for
some time.
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Lanczos Algorithm III

What happens once the ground state energy has
converged?

Fake eigenvalues
called “ghosts” or
“spurious eigen-
values” appear!

Heuristic techniques
to deal with this
phenomenon have
been investigated by
Cullum & Willoughby
and are in IETL
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Observables in ED

 Energy, as function of quantum numbers!
 “Diagonal” correlation functions:

easy to calculate in the chosen basis, i.e. Sz-correlations,
density correlations, string order parameter,...

 Off-diagonal correlations: Sx-Sx, kinetic energy
 Higher order correlation functions:

dimer-dimer correlations, vector chirality correlation
functions, pairing correlations,...

 Dynamical correlations of all sorts (⇒ talk by D. Poilblanc)

 Note that evaluation of complicated observables
can become as important as obtaining the groundstate!

 Note also that in general the precision on correlation
functions is not as high as the energy!
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Observables in ED, example pictures
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Available ED Codes (to my knowledge)

 ALPS ED Codes (many models, but no symmetries yet)
 Fulldiag: complete diag. with thermodynamics
 Sparsediag: sparse matrix Lanczos, only energies.

 Jörg Schulenburgs Spinpack, written in C/C++,
can do large-scale calculations
http://www-e.uni-magdeburg.de/jschulen/spin/

 Nishimori’s TITPACK, Fortran implementation,
widely used in Japan, “cite me” licence.
http://www.stat.phys.titech.ac.jp/~nishi/titpack2_new/index-e.html



Extensions of Exact Diagonalization

 Finite Temperature Lanczos Methods:

 Contractor Renormalization (CORE):



Extensions of Exact Diagonalization

 Finite Temperature Lanczos Methods:
• J. Jaklic and P. Prelovsek, Adv. Phys. 49, 1 (2000).
• M. Aichhorn et al., Phys. Rev. B 67, 161103 (2003).
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 These methods (FTLM,LTLM) combine the Lanczos
method and random sampling to go to larger systems.

 For high to moderate temperatures these methods
can obtain results basically in the thermodynamic
limit.

 The Low Temperature Lanczos Method can also go to
low temperatures to get correct results on a given
sample. Finite size effects however persist.

 Like the T=0 ED method it is most useful, where QMC
or T-DMRG etc fail, such as frustrated and fermionic
models.

 Possibly in ALPS in the not so distant future...

Finite Temperature Lanczos Methods



Extensions of Exact Diagonalization

 Contractor Renormalization (CORE):
• C.J. Morningstar and M. Weinstein,

Phys. Rev. D 54 4131 (1996).
• E. Altman and A. Auerbach,

Phys. Rev. B 65, 104508 (2002).
• S. Capponi, A. Läuchli and M. Mambrini,

cond-mat/0404712, to be published in PRB
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CORE – Basic Idea

 Choose a suitable decomposition of your
lattice and keep a certain number of suitable
states

 Determine the effective Hamiltonian by
requiring to reproduce the low energy
spectrum of the non-truncated system on
small clusters.

 Simulate (or treat analytically) the new
effective Hamiltonian.
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Contractor Renormalization

How to choose the states to keep?

 Low energy states of the local building block

 States with the highest 
weight in the local 
density matrix
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CORE, some results

Kagome antiferro-
magnet, keeping
only the two doublets
of the up-triangles
(4 out of 8 states)

The number of non-
magnetic excitations
before the first 
magnetic excitation
is drastically increasing
with system size.
Semi-quantitative
agreement ED⇔CORE


