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Outline of this lecture:

 Quantum Lattice Models
 Lattices and Models in general and in ALPS

 Exact Diagonalization (ED)
 The Method and its applications
 Ingredients

 ED Extensions
 Finite Temperature Lanczos Methods
 Contractor Renormalization (CORE)



Quantum Lattice Models

kagome lattice Volborthite
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Lattices

 Infinite Lattices are made out of:
 A Unit Cell, containing n “atoms”

 Spanning vectors defining the Bravais lattice:

T1

T2
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Square Lattice
single site unit cell

Lattices II

Some Examples:

Checkerboard Lattice
two sites in unit cell

T1

T2
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Finite Lattices

The present way in ALPS:

T1

T2 Extent is given by multiples of
the Bravais vectors T1 and T2

For the square lattice:
Extent =6x6
⇒ 36 sites
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Finite Lattices

In the near future in ALPS:

T1

T2 Extent is given by non-collinear
spanning vectors.

For the square lattice:
F1=(6,2)=6T1+2T2
F2=(-2,6)=-2T1+6T2
⇒ 40 sites
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Models

 Many Body Lattice Models

 Single Particle Lattice Models

 Constrained Models
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Many-Body Hamiltonians

 Spin models:
 Heisenberg Couplings (any S):

 Modifications:

easy plane, easy axis anisotropies

single ion anisotropy

higher order spin interactions
(biquadratic, Ring exchange,....)
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Many-Body Hamiltonians

 Fermionic models:
 Hubbard model:

!"

++
++#

,1,1,1,2,2,1  )( nnUcccct $$$$



28/9/2004 ALPS User Workshop Manno 11

Many-Body Hamiltonians

 Fermionic models:
 Hubbard model:

 t-J model: (≈large U limit of the Hubbard model)

!"

++
++#

,1,1,1,2,2,1  )( nnUcccct $$$$

)4/1S(S 

)( 

2121

,1,2,2,1

nnJ

cccct

!•+

"+"!
++

####



28/9/2004 ALPS User Workshop Manno 12

Many-Body Hamiltonians

 Fermionic models:
 Kondo lattice model:
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Single Particle Models

 Disordered potentials and hoppings
⇒ Anderson Localization

 Hopping phases
⇒ Hofstadter Butterfly

 Jordan-Wigner transformation
⇒ Disordered XX-spin chains
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Constrained Models (not yet in ALPS)

 Hardcore-dimer models:

 Vertex / Ice models:



Exact Diagonalization
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Exact Diagonalization

 Solve the Schrödinger equation for a many body Hamiltonian
on a finite system ⇒ Standard Eigenvalue problem:

 Within this approach we can basically simulate any model.

 However due to the exponentially growing computational
effort it is most useful where more powerful methods fail:

 Fermionic Models in 1D and 2D (no sign problem)
 Frustrated Quantum Magnets in 1D/2D/(3D)
 Quantum number resolved quantities
 Calculation of basically any observable, i.e. complicated dynamics
 Benchmark for all other methods

!=! EH
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Exact Diagonalization – present day limits

 Spin S=1/2 models:
40 spins square lattice, 39 sites triangular, 42 sites star lattice

Dimension:  up to 1.5 billion basis states

 t-J models:
32 sites checkerboard with 2 holes
32 sites square lattice with 4 holes

 Dimension:  up to 2.8 billion basis states

 Hubbard models
20 sites square lattice at half filling, 20 sites quantum dot structure

Dimension:  up to 3 billion basis states

 Holstein models
14 sites on a chain + phonon pseudo-sites

Dimension:  up to 30 billion basis states  (needs a supercomputer on its own)
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Exact Diagonalization – Ingredients of a code

 Hilbert space
 Site-Basis represention
 Symmetries
 Lookup techniques

 Hamiltonian Matrix
 Sparse Matrix representation (memory/disk)
 Matrix recalculation on the fly

 Linear Algebra / Eigensolver backend
 LAPACK full diagonalization (in ALPS)
 Lanczos type diagonalization (IETL, in ALPS)
 More exotic techniques

 Observables
 Static quantities
 Dynamic observables
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Coding of Basis states

 Representation of basis states in terms of binary numbers
(or generalizations thereof):

           |↑1↓2...>=1102...

 In more complicated models like t-J there is no unique
or best way to represent the states:

|↑1↓2O3...>=11,↑ 0 1,↓ 02,↑ 12,↓ 03,↑ 03,↓ ...

|↑1↓2O3...>=|111203....| ⊗|11’02’...|
charge spin on occ. sites
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Symmetries in ED I

The inclusion of symmetries in an ED code has 
two major advantages:

1.  Quantum number resolved energies and states.
2.  Reduction of the Hilbert space to be diagonalized.
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Symmetries in ED II

 U(1) related symmetries:
 Conservation of particle number(s)
 Conservation of total Sz

 Spatial symmetry groups:
 Translation symmetry (abelian symmetry, therefore 1D irreps)
 Pointgroup symmetries (in general non-abelian)

 SU(2) symmetry
 Difficult to implement together with spatial symmetries
 For Sz=0 an operation called “spin inversion” splits the

Hilbert space in even and odd spin sectors.
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 The complete Hilbertspace : Dim=240 = 1012

 By constraining to Sz=0 : Dim=138*109

 Using spin inversion: Dim=69*109

 Implementing 40 translations Dim=1.7*109

 Using all 4 rotations Dim=430’909’650

Symmetries in ED III

An example of the symmetry reduction factor:
40 sites square lattice S=1/2 Heisenberg model
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Linear Algebra in Exact Diagonalization I

 Lanczos algorithm:
C. Lanczos, , J. Res. Natl. Bur. Stand. 45, 255 (1950).

Iterative “Krylov”-space method which brings
matrices into tridiagonal form. Method of choice
in many large-scale ED programs.
 Very rapid convergence.
 Memory requirements between 2 and 4 vectors.
 Numerically unstable, but with suitable techniques

this is under control (Cullum and Willoughby).
 Easy to implement.

 Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst (eds),
 Templates for the solution of Algebraic Eigenvalue Problems:

 A Practical Guide . SIAM, Philadelphia, 2000
http://www.cs.ucdavis.edu/~bai/ET/contents.html
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 Jacobi-Davidson Algorithm:
E. R. Davidson, Comput. Phys. 7, 519 (1993).

 Rapid convergence, especially for diagonally
dominant matrices (Hubbard model).

 Varying number of vectors in memory.
 Often used in DMRG programs as well.

 “modified Lanczos” algorithm:
E. Gagliano, et al. Phys. Rev. B 34, 1677 (1986).

 actually more like a Power-method,
therefore rather slow convergence.

 needs only two vectors in memory.
 At each step the approximate groundstate

wavefunction is available.
 Difficult to get excited states.

Linear Algebra in Exact Diagonalization II
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Lanczos Algorithm I
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1. Start with a normalized vector |φ1>
2. Apply the Hamiltonian H: 

a1:=<φ1|H|φ1>, b1|φ2>:= H |φ1>- a1 |φ1>
3. an:=<φn|H|φn>,

bn|φn+1>:= H |φn>- an |φn>- bn-1|φn-1>

After n steps:
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Lanczos Algorithm II

Let’s monitor the evolution of σ(Tn):

•Eigenvalues start to
converge from the
extremal eigen-
values.

•While converging
for excited states
one has to be
careful as
approximate
eigenvalues can
remain stuck for
some time.
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Lanczos Algorithm III

What happens once the ground state energy has
converged?

Fake eigenvalues
called “ghosts” or
“spurious eigen-
values” appear!

Heuristic techniques
to deal with this
phenomenon have
been investigated by
Cullum & Willoughby
and are in IETL
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Observables in ED

 Energy, as function of quantum numbers!
 “Diagonal” correlation functions:

easy to calculate in the chosen basis, i.e. Sz-correlations,
density correlations, string order parameter,...

 Off-diagonal correlations: Sx-Sx, kinetic energy
 Higher order correlation functions:

dimer-dimer correlations, vector chirality correlation
functions, pairing correlations,...

 Dynamical correlations of all sorts (⇒ talk by D. Poilblanc)

 Note that evaluation of complicated observables
can become as important as obtaining the groundstate!

 Note also that in general the precision on correlation
functions is not as high as the energy!
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Observables in ED, example pictures
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Available ED Codes (to my knowledge)

 ALPS ED Codes (many models, but no symmetries yet)
 Fulldiag: complete diag. with thermodynamics
 Sparsediag: sparse matrix Lanczos, only energies.

 Jörg Schulenburgs Spinpack, written in C/C++,
can do large-scale calculations
http://www-e.uni-magdeburg.de/jschulen/spin/

 Nishimori’s TITPACK, Fortran implementation,
widely used in Japan, “cite me” licence.
http://www.stat.phys.titech.ac.jp/~nishi/titpack2_new/index-e.html



Extensions of Exact Diagonalization

 Finite Temperature Lanczos Methods:

 Contractor Renormalization (CORE):



Extensions of Exact Diagonalization

 Finite Temperature Lanczos Methods:
• J. Jaklic and P. Prelovsek, Adv. Phys. 49, 1 (2000).
• M. Aichhorn et al., Phys. Rev. B 67, 161103 (2003).
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 These methods (FTLM,LTLM) combine the Lanczos
method and random sampling to go to larger systems.

 For high to moderate temperatures these methods
can obtain results basically in the thermodynamic
limit.

 The Low Temperature Lanczos Method can also go to
low temperatures to get correct results on a given
sample. Finite size effects however persist.

 Like the T=0 ED method it is most useful, where QMC
or T-DMRG etc fail, such as frustrated and fermionic
models.

 Possibly in ALPS in the not so distant future...

Finite Temperature Lanczos Methods



Extensions of Exact Diagonalization

 Contractor Renormalization (CORE):
• C.J. Morningstar and M. Weinstein,

Phys. Rev. D 54 4131 (1996).
• E. Altman and A. Auerbach,

Phys. Rev. B 65, 104508 (2002).
• S. Capponi, A. Läuchli and M. Mambrini,

cond-mat/0404712, to be published in PRB
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CORE – Basic Idea

 Choose a suitable decomposition of your
lattice and keep a certain number of suitable
states

 Determine the effective Hamiltonian by
requiring to reproduce the low energy
spectrum of the non-truncated system on
small clusters.

 Simulate (or treat analytically) the new
effective Hamiltonian.
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Contractor Renormalization

How to choose the states to keep?

 Low energy states of the local building block

 States with the highest 
weight in the local 
density matrix
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CORE, some results

Kagome antiferro-
magnet, keeping
only the two doublets
of the up-triangles
(4 out of 8 states)

The number of non-
magnetic excitations
before the first 
magnetic excitation
is drastically increasing
with system size.
Semi-quantitative
agreement ED⇔CORE


