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Outline of this lecture:

Quantum Lattice Models
B Lattices and Models in general and in ALPS

Exact Diagonalization (ED)
B The Method and its applications
B Ingredients

ED Extensions
B Finite Temperature Lanczos Methods
B Contractor Renormalization (CORE)
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Quantum Lattice Models

Volborthite

kagome lattice



Lattices

0 Infinite Lattices are made out of:
B A Unit Cell, containing n "atoms”

B Spanning vectors defining the Bravais lattice:

T,
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Lattices II

Some Examples:

T oo oo T, /
T

o oo o \o/ e '
Square Lattice Checkerboard Lattice
single site unit cell two sites in unit cell
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Finite Lattices

The present way in ALPS:

E: Extent is given by multiples of

the Bravais vectors T, and T,

—_ T

©0000O0
_ © 00000
For the square lattice: 000000
Extent =6x6 OO0 0000
= 36 sites O 0000 0
©0000O0
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Finite Lattices

In the near future in ALPS:

LE: Extent is given by non-collinear

/ spanning vectors.
—> T

For the square lattice:
F,=(6,2)=6T,+2T,
F,=(-2,6)=-2T,+6T,
= 40 sites

O
@)
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Models

Many Body Lattice Models

Single Particle Lattice Models

Constrained Models
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Many-Body Hamiltonians

[0 Spin models:
B Heisenberg Couplings (any S):

S °S,
B Modifications:
J,(5;S; +58{S7)+J, S[S;
easy plane, easy axis anisotropies
D(S})"
single ion anisotropy
J,(S,°S,)"s  K(S,*S,)(S;*S,)

higher order spin interactions
(biquadratic, Ring exchange,....)
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Many-Body Hamiltonians

[0 Fermionic models:
B Hubbard model:

+ +
—1(C,Crp +Cy 0, )+ Un

o

1,’|‘n1,J,
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Many-Body Hamiltonians

[0 Fermionic models:
B Hubbard model:

+ +
—1(C,Crp +C1 40 ,)+U N 1,

B t-]J model: (=large U limit of the Hubbard model)
+ +
—1 W(Cl,acz,a 6 6C 0 )

oo ¥
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Many-Body Hamiltonians

[0 Fermionic models:
B Kondo lattice model:

+ +
—1 CI,GCZ,O' + C2,O'CI,O'

+J (Gl ¢ Sf) Kondo coupling

O Conduction electrons
site
¢ f-electrons
site
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Single Particle Models

Disordered potentials and hoppings
= Anderson Localization

Hopping phases
= Hofstadter Butterfly

Jordan-Wigner transformation
= Disordered XX-spin chains
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Constrained Models (not yet in ALPS)

O Hardcore-dimer models: @€ @—@
-0 -0 I
-0 I -0
-0 0 60
[0 Vertex / Ice models:
>
'
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Exact Diagonalization

H\W)=E|¥)



Exact Diagonalization

O Solve the Schrodinger equation for a many body Hamiltonian
on a finite system = Standard Eigenvalue problem:

H|¥) = E|¥)

[0 Within this approach we can basically simulate any model.

[0 However due to the exponentially growing computational
effort it is most useful where more powerful methods fail:

Fermionic Models in 1D and 2D (no sign problem)
Frustrated Quantum Magnets in 1D/2D/(3D)
Quantum number resolved quantities

Benchmark for all other methods

Calculation of basically any observable, i.e. complicated dynamics
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Exact Diagonalization — present day limits

O Spin S=1/2 models:
40 spins square lattice, 39 sites triangular, 42 sites star lattice
Dimension: up to 1.5 billion basis states

O t-J models:
32 sites checkerboard with 2 holes
32 sites square lattice with 4 holes
Dimension: up to 2.8 billion basis states

O Hubbard models

20 sites square lattice at half filling, 20 sites quantum dot structure
Dimension: up to 3 billion basis states

O Holstein models
14 sites on a chain + phonon pseudo-sites
Dimension: up to 30 billion basis states (needs a supercomputer on its own)
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Exact Diagonalization — Ingredients of a code

0 Hilbert space
B Site-Basis represention
B Symmetries
B Lookup techniques
0 Hamiltonian Matrix
B Sparse Matrix representation (memory/disk)
B Matrix recalculation on the fly
O Linear Algebra / Eigensolver backend
B LAPACK full diagonalization (in ALPS)
B Lanczos type diagonalization (IETL, in ALPS)
B More exotic techniques
[0 Observables
B Static quantities
B Dynamic observables
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Coding of Basis states

[0 Representation of basis states in terms of binary numbers
(or generalizations thereof):

|/|\1\|,2...>=1102...

O In more complicated models like t-J there is no unique
or best way to represent the states:

|/|\1\|/203"'>=1]_,/|\ O 1, 02,1\ 12“|/ 03’1\ 03“|/ nan

[111203...>=]1,1,0;....] ®|1,0;...]

charge spin on occ. sites
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Symmetries in ED 1

The inclusion of symmetries in an ED code has
two major advantages:

1. Quantum number resolved energies and states.
2. Reduction of the Hilbert space to be diagonalized.

“‘D\ — kyiO JA=0.5 o8
w100 F ® " Kk=m
LLJ M|
-10.4 ( )
-10.8 ' . '
—Tt —7t/2 0 /2 T
K
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Symmetries in ED II

0 U(1) related symmetries:
B Conservation of particle number(s)
B Conservation of total Sz

[0 Spatial symmetry groups:
B Translation symmetry (abelian symmetry, therefore 1D irreps)
B Pointgroup symmetries (in general non-abelian)

O SU(2) symmetry
B Difficult to implement together with spatial symmetries

B For Sz=0 an operation called “spin inversion” splits the
Hilbert space in even and odd spin sectors.
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Symmetries in ED III

An example of the symmetry reduction factor:
40 sites square lattice S=1/2 Heisenberg model

0 The complete Hilbertspace : Dim=240 = 1012
[0 By constraining to Sz=0 : Dim=138*10°

[0 Using spin inversion: Dim=69*10°

O Implementing 40 translations Dim=1.7*10°

[0 Using all 4 rotations Dim=430909'650
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Linear Algebra in Exact Diagonalization I

Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst (eds),
Templates for the solution of Algebraic Eigenvalue Problems:

A Practical Guide . SIAM, Philadelphia, 2000
http://www.cs.ucdavis.edu/~bai/ET/contents.html

[0 Lanczos algorithm:
C. Lanczos, , J. Res. Natl. Bur. Stand. 45, 255 (1950).

Iterative “Krylov”-space method which brings
matrices into tridiagonal form. Method of choice
in many large-scale ED programs.

Very rapid convergence.
Memory requirements between 2 and 4 vectors.

Numerically unstable, but with suitable techniques
this is under control (Cullum and Willoughby).

Easy to implement.
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Linear Algebra in Exact Diagonalization II

[0 Jacobi-Davidson Algorithm:
E. R. Davidson, Comput. Phys. 7, 519 (1993).

B Rapid convergence, especially for diagonally
dominant matrices (Hubbard model).

B Varying number of vectors in memory.
B Often used in DMRG programs as well.

0 “modified Lanczos” algorithm:
E. Gagliano, et al. Phys. Rev. B 34, 1677 (1986).

B actually more like a Power-method,
therefore rather slow convergence.

B needs only two vectors in memory.

B At each step the approximate groundstate
wavefunction is available.

B Difficult to get excited states.
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Lanczos Algorithm 1

=t

. Start with a normalized vector |¢,>

2. Apply the Hamiltonian H:
a;:=<¢;1|H|p;>, bylg>i= H [¢p1>-ay [¢p1>

3. @ni=<0,H]9,>,

I:)nlq)n+1>:= H |¢n>' dp, |¢n>_ bn-1|q)n—1>

(a, b,
After n steps: T b a, b,
’ b, a
\
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Lanczos Algorithm II

Let’s monitor the evolution of o(T,):

-17.25 —
17.3 o H R%M | eEigenvalues start to
aras T . L M converge from the
474 A S S | extremal eigen-

T IS \\\;:‘j:w: values.

4 R ‘%’% e While converging

c -17.5 % % , ]

(0 ‘ \\m for excited states
TS . | one has to be
e . | careful as
78S ., 1 approximate
-17.7 m eigenvalues can
-17.75 : '

0 >0 Iterations 100 150 ;ir:qaelzlrf: g .Ck for
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Lanczos Algorithm III

What happens once the ground state energy has
converged?
-8.2

83|+ +
8.4 |

Fake eigenvalues
called “ghosts” or

Rl ] “spurious eigen-
aadi values” appear!
8.7 ; : |

>
()
0
88L -+ . Heuristic techniques
i ———————— : :
89| ; : to deal with this
9.1} ] been investigated by
0 10 20 30 40 50 60 70 80 90 100 Cullum & Willoughby
lterations and are in IETL
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Observables in ED

[0 Energy, as function of quantum numbers!

[0 “Diagonal” correlation functions:
easy to calculate in the chosen basis, i.e. S?-correlations,
density correlations, string order parameter,...

O Off-diagonal correlations: Sx-Sx, kinetic energy

[0 Higher order correlation functions:
dimer-dimer correlations, vector chirality correlation
functions, pairing correlations,...

[0 Dynamical correlations of all sorts (= talk by D. Poilblanc)

[0 Note that evaluation of complicated observables
can become as important as obtaining the groundstate!

[0 Note also that in general the precision on correlation
functions is not as high as the energy!
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Observables in ED, example pictures

Vector chirality correlations: Kinetic energy correlations:

'x“"....’..‘ / s C /_ \
.o.o.o‘o.o.o.« [N NN\
\L, X I 1A VAR VAR VAR,

\‘0 e_0 .....‘ — / \V/\/\\/ \
'o.o.o.o.o!o,‘,‘ VAN

<(cl+c2 +h.c)(cic, + h.c.)>
<(S1 x5,)(S; xS, )> ~ <S1 xS, ><S3 X S4> - <C1+C2 + h.C.><C;C4 + h.C.>
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Available ED Codes (to my knowledge)

0 ALPS ED Codes (many models, but no symmetries yet)
M rulldiag: complete diag. with thermodynamics
B Sparsediag: sparse matrix Lanczos, only energies.

O Jorg Schulenburgs Spinpack, written in C/C++,

can do large-scale calculations
http://www-e.uni-magdeburg.de/jschulen/spin/

[0 Nishimori’s TITPACK, Fortran implementation,

widely used in Japan, “cite me” licence.
http://www.stat.phys.titech.ac.jp/~nishi/titpack2_new/index-e.html
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Extensions of Exact Diagonalization

Finite Temperature Lanczos Methods:

d  Contractor Renormalization (CORE):



Extensions of Exact Diagonalization

Finite Temperature Lanczos Methods:
e J. Jaklic and P. Prelovsek, Adv. Phys. 49, 1 (2000).
e M. Aichhorn et al., Phys. Rev. B 67, 161103 (2003).



Finite Temperature Lanczos Methods

[0 These methods (FTLM,LTLM) combine the Lanczos

method and random sampling to go to larger systems.

[0 For high to moderate temperatures these methods
can obtain results basically in the thermodynamic
limit.

0 The Low Temperature Lanczos Method can also go to
low temperatures to get correct results on a given
sample. Finite size effects however persist.

[0 Like the T=0 ED method it is most useful, where QMC
or T-DMRG etc fail, such as frustrated and fermionic
models.

[0 Possibly in ALPS in the not so distant future...
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Extensions of Exact Diagonalization

d Contractor Renormalization (CORE):
e C.J. Morningstar and M. Weinstein,
Phys. Rev. D 54 4131 (1996).
e E. Altman and A. Auerbach,
Phys. Rev. B 65, 104508 (2002).
e S. Capponi, A. Lauchli and M. Mambrini,
cond-mat/0404712, to be published in PRB



CORE - Basic Idea

[0 Choose a suitable decomposition of your
lattice and keep a certain number of suitable
states

[0 Determine the effective Hamiltonian by
requiring to reproduce the low energy
spectrum of the non-truncated system on
small clusters.

[0 Simulate (or treat analytically) the new
effective Hamiltonian.
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Contractor Renormalization

How to choose the states to keep?

d Low energy states of the local building block

0 States with the highest 't TS
weight in the local os
density matrix z |
- Plaquette Lattice
= 06 1 _
2 ®—® Lowest Singlet
© m----# Lowest Triplet
= O~ — < Sum of lowest Singlet & Triplet
2 04 1
8 _ - ..m
0.2 o
O [ — l. 1 . ! | .
0 0.2 0.4 0.6 0.8 1

JN
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CORE, some results

Kagome antiferro-
magnet, keeping
only the two doublets
of the up-triangles

(4 out of 8 states)

The number of non-
magnetic excitations
before the first
magnetic excitation

is drastically increasing
with system size.

Semi-quantitative
agreement ED<CORE

Ln(# states below gap)

D

N

T

' BX )

CORE N even
ED N even
CORE N odd
ED N odd

30

40
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