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Abstract. The recent anomal ous segregation experiment [1] shows dramatic, rapid internal
state segregation for two hyperfinelevelsof 87Rb. We simulate an effective one dimensional
model of the system for experimental parameters and find reasonable agreement with the data.
The Ramsey frequency isfound to beinsensitiveto the decoherenceof the superposition, andis
only equivalent to the interaction energy shift for a pure superposition. A Quantum Boltzmann
equation describing collisions is derived using Quantum Kinetic Theory, taking into account
the different scattering lengths of the internal states. As spin-wave experiments are likely to
be attempted at lower temperatures we examine the effect of degeneracy on decoherence by
considering the recent experiment [1] where degeneracy is around 10%. We also find that
the segregation effect is only possible when transport terms are included in the equations of
motion, and that the interactions only directly alter the momentum distributions of the states.
The segregation or spin wave effect is thus entirely due to coherent atomic motion as foreseen
in[1].

1. Introduction

A topic of great interest in many particle quantum mechanics is the effect of coherence in
mesoscopi ¢ systems. The recent experiment at JILA [1] shows transient highly non-classical
behaviour, characteristic of such phenomena. An ultra-cold non-condensed gas of 87Rb is
harmonically trapped and prepared in a superposition of two hyperfine states by a two photon
/2 pulse. The superposition is allowed to evolve for a range of different times and the
densities of the two levels measured across the trap; the data are then collected via absorption
imaging. In the cold collision regime of the experiment the two states interact via slightly
different S-wave scattering lengths, moreover, the states experience different Zeeman shifts
in the presence of a magnetic bias field, and the combination of these effects produces an
effective potential between the two states [1]. This differential potential was characterized
using the Ramsey spectroscopy technique, and the segregation effect was explored for
different potentials and atom densities. When the differentia potentia is constant across
the cloud the motion is not observed. When the differential potential has a gradient across
the cloud the atoms appear to redistributein the trap, as long as the two states are in a partial
superposition. The dissipation of the coherent relationship between the states is responsible
for the transience of the spin waves.

The origina experiment [1] stimulated much work on this system. Three theoretical
treatments [4, 3, 5] found good agreement between simulations of the segregation dynamics
and the evolution of the experimentally measured distributionsreported in [1]. These works
all use the spin operator notation and treat the system as essentially a spin wave problem.
More recently, detailed imaging of the Bloch vector was carried out during spin wave motion
in[8]. Simulations of linearized spin kinetic equations also showed good agreement for the
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frequencies and damping damping times of linearized collective modes [9]. We do not use a
spin operator formalism in this paper, athough this has no effect on our results.

The outline of this paper is as follows. The equations of motion are found from the
Hamiltonian for the system in Section 2. The spectroscopy of the initial state is outlined
in Section 3. The interpretation of the Ramsey experiment and the interaction energy are
discussed in Section 4. In Section 5 theissue of damping isaddressed. A Quantum Boltzmann
equation describing the effects of collisions on the distributions for states with different
scattering lengths is derived, and we discuss the relaxation time approximations used in
the simulations presented in Section 6. In Section 7 we consider the question posed in the
experimental report regarding the physical state of motion of the atoms during the segregation.

2. Theoretical Framework
2.1. Second Quantized Hamiltonian

The second quanti zed Hamiltonian for a coherently coupled two state gasis

H= /dsx {w{Hl(X)wl + Yy (X))

+ %wwwlwl +ur ] Yh i + %w;w;%%
+ gE(x) (wiwzei‘“ + w%wle-i‘“) } (1)
where
h2v?2
Hj(x) = o T Vi (%) + hw;(x) %)

for j = 1,2, and g isonly nonzero during the initia two photon pulse, creating a coherent
superposition of the two hyperfine states. Note that the Zeeman splitting of the transition
frequency is position dependent but thisis absorbed into the effective external potentials. The
Heisenberg equations of motion for the field operators are

i = Hy(x)91 + uiipii o + wiodhhotps + gE(x)1hae’, 3
ihihy = Ha(X)th2 + ugatblthaths + uropiepis + gE(x)1hye ", (4

2.2. Experimental Details

The experiment uses an ultra cold non-condensed 87Rb gas held in a harmonic trap at
temperatures T~ 850 nK. The trap is a cigar shape with frequencies w, = 27 x 7 Hz
and w, = 27 x 230 Hz. A 7/2 two photon pulse is used to create a superposition of the
1) = |F = 1,mp = —1) and |2) = |F = 2,mp = 1) hyperfine states from a thermal
equilibrium |1) gas. The swave scattering lengths between the hyperfine states |¢) and |j),
ai;, A€ay = 100.9ag, a12 = 98.2a¢ and aso = 95.6ay, where ag is the Bohr radlus[l] In
the usual cold collision pseudo-potentia approximation thisleads to the interaction strengths
Uij = 47rh2aij/mR. (5)
where m is the 8"Rb mass. Since the scattering lengths are so similar, and almost evenly
split about a1, we define the interaction splitting
47rh2a0

ou = U11 — U22 = 5.3 y (6)
m
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and use the approximations

47h?

Uil — U2 = 27ﬂ ~ (511,/2, (7)
m
Ah?

Uo — Ugo = 2.6 ULLEC Y du/2, (8)

m
in the remainder of this paper.

A magnetic biasfield isused to change the effective differentia force exerted on the two
states, and can be chosen to either cancel or enhance the mean field force. Segregation of the
two species is observed via a subsequent two photon pulse which causes a transition to an
internal state appropriate for absorption imaging. The magnetic bias field is used to control
the onset of segregation for a given density, or aternatively the density may be increased for
afixed bias strength to produce a similar effect.

2.3. Equations of Motion

In order to simulate the full behaviour of this system we wish to find suitable equations
of motion to describe the system in the Hartree-Fock regime, where a local density
approximationisvalid. Defining the Wigner amplitudes

ny(x,p) = [ v (wlx—y/2us(x+y/2)e P ©
flxp) = [ @ytultc y/2ualxot y/2)e P (10
s0 that the densitiesare
3
Ny = [ s o) = (0] G0, (09). 1)
d3
P = [ i ) = (160000, (12)

and using Hartree-Fock factorisation and standard Wigner function methods[2], the equations
of motion are written in terms of n(x,p) = ni(x,p) + na2(x,p) and the segregation
m(x, p) = 7’L1(X, p) - TLQ(X, p) as

n(x,p) = {—(p/m) Vx + VVer(x) - Vp}n(x,p)
- %VVdig(x) . me(x, p)
+u{VF(x)- Vpf(x,p)* + VF(x)* - Vo f(x,p)}, (13)

m(x,p) = {—(p/m) - Vx + VVeg(x) - Vp} m(x, p)
— 5V Vair(x) - Vpn(x, p)
~ 2, p) F(x)” — fx,B) F(x)}, (14)
f(x.p) = {~(p/m) - Vs + VVenr(x) - Vp} f(x. D)
0 i p)
—i52 (m(x, P)P(x) — f(x, p)M(x))

+ —VF( ) - Vpn(x, p), (15)
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where the potentialsare
1
Vet (x) = 5 <V1 (x) + Va(x) + 3ui2N(x) + du M(x)> , (16)

Vaige (%) = hAw, (x) + FAw(%). (17)
and the frequencies are the coherent frequency shift

hAw(x) = 2ugaNa (%) — 2u11 N1 (X) + 2u12(N1 (%) — Na(x))

~ — julN(x), (18)

and the Zeeman shift

hAw,(x) = h (w2 (x) — w1 (x)) = Va(x) — Vi(x). (19)
For thelow densities employed these equations of motion are nearly exact for thethermal gas,
apart from the relaxation caused by collisions.

3. Spectroscopy of theinitial state

The result of the laser excitation is to rotate the spin wavefunction into the |2) subspace, so
the one-body wavefunction is transformed to

1) — t|1) +r|2), (20)
with [¢|? + |r|? = 1. Infield theoretic language (in the Heisenberg picture) we describe the

initial state by the field operators ;1 (x) and ;2 (x), where the subscript ¢ denotes refers to
theinitial state before the pulse. These transform to

Yir(x) = ¥1(x) = thi(x) + 7¢ia(x) (21)
Yia(x) = Ya(x) = —rihin (x) + iz (x), (22)
where the condition [¢|> + |r|> = 1 ensures the conservation of total number and r and ¢
are chosen real. We denote the population densities by N;(x) = (w; (x)¥,(x)), and the

coherence amplitudeby F'(x) = <¢J{(X)¢2 (x)). Ingeneral the population densitiestransform
to

Nii(x) — Ni(x) = [t|*Nip (%) + |7|*Nia(x) + t*rFy(x) + r*tFf(x), (23)
Nio(x) — Na(x) = |r|2Ni (%) + |t|*Nia(x) — t*rF}(x) — r*tFi(x), (24)
For the 8"Rb experiment theinitial occupation of the 2 stateiszero, so that N1 (x) = N(x),
N;2(x) = F;(x) = 0 and atwo photon pul se causes the transformation

Nia(x) — Ni(x) = [t|2N(x), (25)
Nig(x) — No(x) = |r|>N(x), (26)

Fi(x) = F(x)=—-t"rN(x), (27)
[F3(x)|* = [F(x)[* = N1(x)N2(x), (28)

so that (28) corresponds to a fully coherent superposition.

3.1. Energy Density

If we consider the total energy density we have in general

060 = {wn (1 4160 v )+ (v (e + a0 )

+ (el +waplvhvis + S2ululiay, ) (29)
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Changing theinterna state of an atom does not change its velocity so the kinetic energy
terms may be ignored in finding the change in energy of the gas during the transition. Using
Hartree-Fock factorization and (25-28), the energy density is

U(x) = u11N1(x)? + w12 (|F (%)|* + N1(x) N2 (x)) + ugaNa(x)*
+ Vi(x)N1(x) 4 Va (x) N2 (x). (30)
Eva uating the change in energy density for an arbitrary rotation defined by (21), (22) leadsto

AU(X) = <U11(|t|4 — 1) + 211,12|t|2|7‘|2 + U,22|7‘|4> N(X)2

+ (V2 = V1)|r[*N (x). (31)

3.1.1. Infinitesimal rotation For avery small rotation |r|? < 1 and 1 — [¢|* ~ 2|r|2. Putting
Na(x) = N (x) < N(x), |r[* = 0and Ny (x) ~ N(x), wefind

AU (x) = 0N(x) (2(u12 —u11)N(x) + Va(x) — Vl(x)> , (32)
For 8"Rb thisbecomes (using (7, 8))
AU (x) = 0N(x) ( —du N(x) + Va(x) — Vl(x)> = 0N (x)Vaigr (x), (33)

so that the change in energy density varies linearly with the number of atoms transferred to
the higher energy state, and is proportional to the differential potential.

3.1.2. 7/2 pulse For ar/2 pulsethe energy density changeis

AU(x) = <3U11 + 2u12 + u22> N(:)Q + (Va(x) — V1(x)) NéX) . (34
For 8"Rb this becomes
AT(x) = <3u i (5u> NOI 4 (va0) — v o) 2. (35)

Thus the effect of an intense pulseis to produce a nonlinear change in the energy density via
the mean field interactions.

3.2. Coherence energy

Theanalysisissimplified by notingthat because the only net force in the experiment isawesk
differentia force between the two interna states, the total atomic density is approximately
conserved. The experimental data suggests that this is a reasonable approximation [1], and
our detailed simulations confirm this expectation. Treating N (x) as constant allows insight
into the energy conserving processes in the dynamics. In terms of the normalized moments
(ph(x)) = [ d®p p*n;(x,p)/N;(x)(2nh)* we have the relations

Ni(x){p1(x)) + N2(x)(p2(x)) = N(x)(p(x)) =0 (36)

(which is essentially momentum conservation in the absence of any externa perturbation of
the stationary density profile), and for the total kinetic energy density

N1 (x)(pi(x)) n No(x)(p3(x) _ N(x)(p*(x))
2m 2m 2m

(37)
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Here only N(x) is constant since the other moments and densities will change during the
relative motion of the two species. We may now write (30) in the form

Vi(x) + Va(x))

U(x) = 3“TI12N(X)2 + : N(x) (38)
M2 (x)? + %“N(X)M(x) _ %hsz(x)M(x) (39)

+ uro|F(x)[? (40)

+ N(x)%, (41)

where the spatial segregationis M (x) = [ d®p m(x, p)/(27h)3. Thefirst lineis constant
in time, and the second line only varies with M (x). Thethird lineis the coherence energy
density which may change during the motion, while the last line is a function of the local
densities and temperatures through (37). It is clear that the coherence energy moves between
F(x) and M (x) viarelative motion which changes the local temperature and momentum of
each distribution.

4. The Ramsey frequency and theinteraction energy shift

The Ramsey technique has recently been shown to be a particularly useful tool for exploring
the coherence properties of ultracold dilute gases [1, 11, 8]. In applying the technique
to the ultra-cold non-condensed gases of these experiments there remains an issue in the
interpretation of the technique which we wish to resolve. The problem is whether or not
the Ramsey frequency is sensitive to the decoherence of the superposition of internal states
required to resolve the Ramsey fringes. The Ramsey technique has been developed and used
extensively for probing therel ative energies of internal statesin non-interacting atomic beams.
When interactions are negligible the measured quantity is the energy difference between the
two internal states of the superposition. We will see that for the interacting case, thisisonly
partially true because interactions produce a transient mean field energy which decays with
the coherence of the superposition.

4.1. Experiment

The experiment measures the frequency of oscillation for the relative occupation of the two
internal states, after a second /2 pulseis applied to the system. The final two photon pulse
transformsthefieldsto

v o B (42
vy — 22 J;ﬁ (43)

In terms of the densities N; (x) = (] 4;), and the coherence amplitude F'(x) = (¢1,), the
ratio of the densities may be written
Na(x)  N(x) —2Re F(x) (44)
Ni(x) N(x)+2Re F(x)’
where N (x) = N1 (x) + N2(x) may be assumed invariant. The ratio will then only depend
on F'(x); in particular, it will oscillate at the same frequency. Applying the second /2 pulse
at different times and measuring V1 (x)/Nz(x) thus determines the frequency of F'(x), and
thisisthe frequency accessible viathe Ramsey technique of [1, 8].
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4.2. Coherence equation

In a typical experiment [1, 8], a /2 pulse generates an equal superposition of the two
hyperfine states which is then alowed to evolve without coupling until a second /2 pulse
is applied. We are primarily interested in the influence of the interactions on the Ramsey
frequency, and after the first pulse the Heisenberg equations of motion generated by the
interaction terms in the Hamiltonian (1) are

ity = w9l + uralibaths, (45)
i)y = U22¢;¢2¢2 + U12¢1¢1¢2- (46)

The operators ¢, and 111, commute with the Hamiltonian when E(x) = 0, so the
occupations are preserved. The equation of motion for the coherence is
Sd@ls) !
h——" = un(Y19svavpa) + ura{Y19191¢2)

— ury (Y]] 1he) — wra(PlSas). (47)

4.3. Four point averages

There are two equivaent ways of treating the four point averages when the system is
noncondensed and thermal, both of which lead to results of the form

(Y1{v1¢a) = 2N1 (%) F (x). (48)
i) When the initial quantum state is nondegenerate, each field may be writtenin termsof a
set of orthonormal si ngI e particle wavefunctions ¢, (x)

Z r(X)air, (49)

where [a;,, a; ] = 0i;0,. The densities and coherence then read

(i) Za» x)(al,ajs)- (50)

The eigenva ues of the operators N, = ajTaiT which contribute significantly are either
0 or 1. We can describe the situation by the averages

<ajrair> = Ni’l‘) (51)
(aLaQT) = M,. (52)

For all averages (ajTajs) = 0 when r # s, corresponding to independently occupied
modes. We then have

wle Z |¢r | Mr7 (53)

and the four point averages become, for example

Tt 67‘j65kN17‘Ms + 6sj6rkleMr when r 7é § and.] 7é k:
(a1,a1,015020) = 0 otherwise. (54)
The four point average becomes

(Wlvlie) =2 |60(0) P ds(x) N1, M,
7,8, TF#S
~ 2N, (x)F(x), (55)

where the approximation is valid if the occupation is spread over very many modes, as
for athermal state, so that theterm withr = s isnegligible.
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ii) Alternatively, the same result may be found using Hartree-Fock factorization for the
averages over thefield operators. This method uses the Gaussian statistics of the thermal
gas, which may hold under more genera circumstances than the arguments of i), but is
equivaent for the system under consideration. The averages are

(i fusta) = (i) (Wiea) + (W]a) (Ws) + (W]wd) (wsa). (56)
For athermal gas there is no anomalous average, so we recover the same result as (55)
(Wleleiye) = 2N (%) F(x). (57)

4.4. Ramsey frequency

Using either approach, the equation of motion for the coherence becomes
d

Zh—F(X) = [QU,QQNQ(X) - 211,11N1 (X) + 211,12(N1 (X) - NQ(X))] F(X)

dt
= hwr(x)F(x). (58)
Thusif the gasisthermal, the frequency of oscillation wr(x) isindependent of the amplitude
|F'(x)|. In particular if somekind of damping reduces | F'(x)| with time, this does not change
the Ramsey frequency.

4.4.1. Transport and trap effects The full equation of motion (15) may beintegrated to find

M) |9 (Flve() = — i (Bwelx) + M) F(x)
= —iwr(x)F(x) (59)
wherethe velocity is
3
Vi) = s [ Gerapep). (60)

When the vel ocity vanishes we recover (58) with an additional shift caused by the trap energy
difference for the two states. The coherence current described by v may ater the measured
Ramsey fringes, and indeed full simulationsmay be required for comparison with experiment
when significant motion occurs.

4.5. Interaction energy shift

The quantity which is sensitive to the loss of coherence is the interaction energy, which in
general does not correspond to the Ramsey frequency wr(x).
The interaction energy change caused by changing the internal state from |1) to |2) is
found from the chemical potentials associated with this change
_ U
Neglecting the transport and trap terms for simplicity, we use the mean energy density for the
interactions

(3 U
Ux) = = @1e1vavn) +ua(ivlinda) + 22 Whelvaa),  (62)
and factorize averages as in (55), to find
| F|?
p1 = 2u11 N1 + u12No + N, (63)
1
| F|?

p2 = 2u2oNo + u12 Ny + (64)

ON,
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The changein energy caused by thistransitionis Ay = o — 1 = hAw,,, so that using (63),
(64) we find

hAw, = 2u22Ns — 2u1 1Ny + ui2(Ny — Na)
| F|? | F|?
N,  2ON,
The derivatives of the coherence energy density are not evaluated because it is not usualy

possible to do so in any direct manner since |F(x)|? cannot generaly be specified by
knowledge of the N;(x). The Cauchy-Schwartz inequality leads to

|F(x)]* < N1 (x)Na (x). (66)

When |F(x)|? = N (x)Na(x) the superpositionis purely coherent, leading to afactor of 2in
the cross interaction part of the frequency shift; whereas for |F|? = 0 the extra factor due to
the coherence is absent and we recover the thermal result. A simple model which we will use
isfound by taking | F'|? = «a(t) N1 No, with o(0) = 1 reconstructing theinitial condition (28),
and a(t — oo) = 0 medelling the damping to thermal equilibrium. The mean field energy
shift becomes

+ u12

(65)

hAwH = QU,QQNQ — 211,11N1 + Qa(t)ulg(Nl — NQ) (67)
Immediately after the pulse
Aw,(x) = wr(x), (68)

so that for short times the Ramsey frequency coincides with the interaction energy shift.
Inclusion of the effect of collisionswill cause |F'(x)| to decay with time. The simplest way
of doing thisis to consider the case where there is no differential potentia gradient so that
segregation cannot occur. The collisionswill still have a relaxation effect on the coherence
and as a first approximation we may use the equation of motion

. 1
F = —iwr(x)F — T—F, (69)

where 7. isthe timescale of relaxation. Solving thisand using (65) gives
hAwH = 2u99 Ny — 2u11 N7 + U,12(N1 — NQ)(I + e_Qt/TC).
(70)

Clearly the mean field energy shift is sensitive to the decay of coherence, and decays at twice
the rate for the amplitude.

5. Kinetic Theory of Coherence Damping

We now consider the role of collisions in dissipating coherence. Our starting point is the
guantum kinetic theory of Gardiner and Zoller [7], which may be used to find an expression
for the damping rate of f(x, p). While the expressions found are quite explicit, they are not
easy to simulate, so that for the actual simulations we will use simplified forms based on a
relaxation time approximation.

5.1. Quantum Kinetic Theory with internal degrees of freedom

In order to derive the damping for f(x, p) we first consider the damping term in the equation
of motion for the reduced density matrix for a gas with a single internal state. For brevity
of notation we suppress x arguments where possible since the damping is local. For ease
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of comparison with [7] we carry out the following in K variables. We seek the equation of
motion for the terms

fom (k) = / Py (0] (x — ¥ /2 (x + y/2))e Y (71)

where [, m = 1, 2. The derivation of the Quantum Boltzmann equation may then be carried
out dlong similar lines to that in [7]. The principa modification of the derivation is due to
the different scattering allowed between distinguishable interna states of the particles, and
the preservation of possible coherence between interna states. The resolution of the field
operator for interna state 7 into its momentum components v;k (x) is defined similarly to
(BL) of [7] as

Pi(x) = Z e KXk (x). (72)
K

The projector defined in (48) of [ 7] for the derivation of the master equation simplifiesslightly

because no Bose-Einstein condensate is present in this case, and becomes
In) if Y .ni(K,r) = N(K)

pN|n) = - (73)

0 otherwise.

This projector identifies al configurations with the same distribution in K, but leaves the

position and internal state distributionsundisturbed. To eval uate the effect of collisionson the

coherence we require the equation of motion for the reduced density matrix

PNp = PNPPN = UN, (74)
induced by the interaction Hamiltonian
1
Hp =3 Z Ui;(1,2,3,4), (75)
17, €

in which we have used the notation for the sum over all momenta defined in [7]

Y-y (e

e Ki1,K3,K3, Ky
and the interaction operator U;;(1234) = U, (e):

U;;(1234) = / d*x / dox! XKy x Ky x—iKyx')

Pl ()l (6w (x — X )ik, () k. (%), (77)
Inthisform H; isjust the K space representation of the second line of (1). In what follows
we will make the usual psuedopotentia approximation for the interaction parameters and set

2 ..
= 47Th%“”(5(x —x') = u;0(x — x'). (78)
m

uij(x — X/)

In order to describe the exchange collision 1, 2 — 4, 3 we a so define the interaction operator
Ui;(1243) = Uj;(€) as

Uis(8) = sy [ i 06036 1m0

Pl (Yl (X)viK, (X)¢ik, (x) (79)
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which reverses the momenta of the last two operators. Carrying out the procedures of [7]
leads to the density matrix collision term similar to (75€) of [7]

N (t)]con = ;? Z 5(Aw(e))

ijlJ, e
x { [QUij(e)UN—e(t)U[TJ(e) — Uij(e)U] ,(e)un(t) — on (1)U}, (e)Uij(e)
+ [Uij(e)vN—e(t)UL(é) + UL (®)on—e(t)U; ()

—wmwb@mw—mmW@wmﬂ}, (80)

where Aw(e) = w4 + w3 — wy — wy. Thefirst lineis the contribution from the collisions
1,2 = 3,4and 2,1 — 4,3 and isasum of terms like (75€) for asingleinternd state, while
the remaining terms describe the collisions1,2 — 4,3 and 2,1 — 3, 4. Of courseif only one
internal state occurs, the substitution: = j = I = J restores the exchange symmetry of the
operator Uy; (e) = U;;(€) = Ufi(—e) and we recover the ordinary collisionterm.

5.2. Modified Quantum Boltzmann equation

We now seek the Quantum Boltzmann equation for this system, which is the equation of
motion for (71) in the continuum limit. Tracing over the reduced density matrix allows us to
writethe equation of motion for

(Whtmi) = > Tr{oNUf ) (81)
N
intheform
d t o i
awlkwmk) = <2h2> i]%:e §(Aw(e))
< | (U] (@)[¥ftbm, Uij(@)]) + (Ui (), bitbmi]UJ 5 (e)) (82)

+ <U;J(é)[w;rkwmk, Uij(e)]) + <[Uij(e)7¢;k¢mk]U;J(é)> ) (83)

The terms in lines (82) and (83) give the direct and exchange scattering contributions
respectively. The details of passing to the continuum limit are discussed in Appendix A.
For the purposes of ease of comparison with other calculations of this kind and coherence
with the rest of this paper, we will also write the final result in terms of momenta P = hK
and energies e = hw instead of frequencies and wave vectors. We eventually find

8 fim © [ d*Ps d*Ps .
B — = — d P4
ot ) @rh)3 ) (2xh)?

ot
XO0(P+Py—P3—Py)i(e+e2— €3 —€4) Z“U
ilJ

X l((fu(P) +017) (fir(P2) + 0i1) f1m (P3) f.1i(Pa)

— fir(P) fir(P2)(frm(Ps) + 01m)(fri(Pa) + d14)
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+ (fis(P) 4+ 015)(fir (P2) + 0i1) fri(P3) f1m (Py4)

— fir(P) fir(P2)(frm(P3) 4 dym) (fri(P4) + 511')) Uim

+ ((me(P) +07m) (f1i(P2) + 01:) fir (P3) fiy (Pa)

— frmP) fri(P2)(fir (P3) + 0ir) (fis (Pa) + 6iy)

+ (fom(P) + 0gm)(fri(P2) + 015) fir (P3) f17(Pa)

— frmP) fri(P2)(fis(P3) + 015)(fir (Pa) + 51'1)) Uil] (84)

This is a sum of direct and exchange Quantum Boltzmann collision terms, summed over
the possible interactions for each case. Thisis now in a form where simplifications may be
introduced, and there are a number of useful results that can be obtained from this equation
for the particular case of 37Rb.

5.3. The case of equal scattering lengths and low density

If we drop theterms proportional to d;;, and set the scattering lengthsequal, so that w;; = w12,
we straightforwardly recover the Boltzmann limit for I £ m, in agreement with (6) of [5],

Ofim|  mui d’Ps d’Ps
% = h / (27h)3 / (27h)3 / P
X (S(P + Py —P3— P4)(5(6+62 — €3 —64)
x {3n(P3) fim (Pa) + n(P4) fim (P3) — n(P) firn(P2) — 3n(P2) fim(P)},
(85)

where we have set f11 + fo2 = n. These terms involve products of two distributions, and
we will use anotation in which terms involving products of j distributionswill be denoted by
Jim |j'

It isimportant to note that the presence of coherences in the collision integrals means
that the usual arguments for the relaxation time approximation are not strictly applicable. For
the |1) state for example, with the same approximationsas above, the collision term becomes

2 3 3
85;1‘2 - m;Ll?/ (;lﬂ];)23/ (CQZWI;)L;’/ P
XO0(P+Py—P3—Py)i(e+e2— €3 —€4)
x {2n(Py) f11(P4) — 2n(P2) f11(P)
+2f11(P3) f11(P4) — 2f11(P2) f11(P)
+ 2 f12(P3) fo1(P4) — f12(P) f21(P2) — f12(P2)f21(P)}, (86)

so that we expect the coherence terms, likethose in the last line, to provide extra damping for
the distributions.
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5.4. Equilibrium coherence damping

The Quantum Boltzmann collision integrals for the distributions n;(x,p) vanish if the
distributions are in local equilibrium. When there are two interacting interna states with
different S'wave scattering lengths, there is an additiona damping effect caused by the cross
interactions. In the experiment the degeneracy is typicaly about 10% so we will find the
effect of keeping the differences in scattering lengthsin (84) using the Boltzmann equilibrium
momentum distribution. Since the quartic terms in (84) cancel, there are two processes to
consider. The quadratic terms provide the most important contribution for low phase space
density. The cubic rate has the additional interesting feature of depending on the phase space
density N (x)\?,, where the thermal deBrogliewavelength is Ay, = (27h* /mkpT)'/2.

5.4.1. Quadratic terms Retaining the differences in scattering lengths we find the term
corresponding to the Boltzmann approximation (85) is

8flm‘ 7T/ d3P, / d3Ps / 3
Zml d°Py
ot l2 k) (27h)3 (27h)3
X (5(P + Py —P3 — P4)(5(6+62 — €3 —64)

X Z {QUizUim(fim(Ps)fzi(P4) + fii(P3) fim (P4))

K2

— U (fim (P) fii(P2) + fun (P) fis(P2))
= U (f1i (P) fim (P2) + fim (P) f5(P2)) } (87)

To find the local damping rate of the coherence amplitude N, (x) = [ (2‘1:—5)3 fim(x,p) we
approximate the equilibrium distribution by the local Boltzmann equilibriumform

3/2
Fim (%, D) = Ny (x) (27h)? (%) exp (—ap?), (88)
witha = 1/2mkpT. Integrating leads to
0Ny, s 2
S| = I 2 (= ) (N ) Ni )+ N0 N () (89)

where I3, is caculated in Appendix A. Clearly the collisions between the same hyperfine
state do not cause damping of coherence, since this expression vanishes for I = m. When
I # m, the interaction terms are (u;; — u;m)? = (6u/2)? for dl i. Interms of the thermal
relative vel ocity, the final result may be written as

OF (x)

5= 47(6a)?0, N (x)F (x), (90)

where da = a1 — a12. The rate coefficient takes the form owvp(x), which occurs in S
wave scattering of distinguishableparticles, but with an effective scattering length da. For the
experiments of [1] thisproducesal/e decay timefor the coherence of ~ 13 s at the center of
thetrap, asnoted in[5].

5.4.2. Cubic damping For single species collisions, the cubic terms in the Quantum
Boltzmann equation are responsible for the Bose enhancement of scattering which is crucial
in describing BEC growth, four wave mixing and other statistical collision phenomena that
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can occur in nonlinear atom optics at high phase space density. For two internal states, the
cubic terms of (84) are

8flm s d3P2 d3P3 3
Zim _ d°Py
ot 1s k) (2wh)? (27h)3
X 6(P+P2 —P3 —P4)(5(6+62 —63—64)2
iJ

X l(flJ(P)fim(PS)fJi(P4)UiJ + fir(P2) f1m (P3) fri(P4)urs

— fim(P3) fri(P) fis (P2)uis — f1i(Pa) fr7 (P) fim (P2)tm.s

+ fir(P) fis(P3) frm (Pa)uis + fig(P2) f1i(P3) fim (Pa)urs

— fim(P3) fis (P) fii(P2)uis — fJi(P4)flm(P)fiJ(P2)UmJ> Uim

+ (me(P)fli(PS)fiJ(P4)UiJ + f7i(P2) f17 (P3) fim (Pa)tumys

— fir(P3) fim(P) frs(P2)uis — fir(Pa) frm(P) fri(P2)urs

+ frm(P) fii(P3) fis (Pa)uss + f1:(P2) fi7 (P3) fim (Pa)tm.s
— fir(P3) fym(P) fii(P2)uiy — fiJ(P4)flm(P)fJi(P2)UlJ> Uil] . (9D

Using a thermal Boltzmann distribution and the same procedures as in the previous section,
thismay bereduced to

8Nlm
ot 13

™
= — gl ZUiJ{(Uil — Ui )(N1y NyiNim — NiiNigNym)
iJ

+ (wirtgi + WimWm — 2Uim 1) (N Nig Noym + NiJNJiNlm)}- (92)

Asfor the quadratic rate, when I = m the cubic contribution vanishes. When [ £ m we may
use I>34 from Appendix A to find
OF 3

8(tX) ‘3 = — \/g4w(6a)%r)\f’h (N1(x)? + Na(x)? + 2| F(x)|?) F(x), (93)
where again we have separated the effective cross-section. For the rubidium experiment where
degeneracy is about 10% we estimate the peak damping rate by simply using N;; = N/2
which holdsjust after thefirst 7 /2 pulse. Equation (93) now becomes

8Fa—(tX)‘3 T \/2471-(6@)2”1“)\?}1]\[ (X)N (x)F (x). (94)

This rate is proportiona to ovp(x)A¥, p(x), which is distinguished from (90) by an extra
factor of the phase space density. For the JILA experiment [1] this process leadstoa1/e
decay time at the trap center of ~ 240 s. The cubic rateis clearly unimportant in this regime,
but if the phase space density isincreased significantly, the cubic effects can approach or even
exceed the quadratic damping.
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Itisalso interesting to note the presence of a self interaction term in the cubic damping
rate, proportiona to |F(x)|2. It was found in [11] that the coherent velocity changing
collisionsresponsiblefor spin waves may suppress the decoherence caused by atomic motion
in a non-uniform system. For high phase space density there is also the possibility of the
opposite effect becoming important, so that even in equilibrium the coherent interactions may
cause significant additional damping.

5.5. Damping to local equilibrium

The equations of motion must be modified to include the effects of collisions on the
distributions. This causes a relaxation of the momentum distributions towards equilibrium
which will be dealt with using arelaxation time approximation. The rates derived from simple
collision time considerations require modification to account for the effect of coherence on
the relaxation. The coherence distribution between the two fields has a significant effect on
the relaxation process because it plays a similar role to the single species distributions.

5.5.1. Relaxationtimeapproximation  The collision damping termin the equationsof motion
for asingleinternal stateiswritten in the relaxation time approximation as

h(x7 p)|coll = - Td_l(x) (n(x7 p) - n(eq) (X7 p)) (95)
where n(¢? (x, p) is the local equilibrium, and 7, is damping time which may depend on
position and therelative vel ocities of the two internal states. An estimate for the collision rate
may be found from elementary kinetic theory if the correct quantum mechanical scattering
cross sections are used. The hard sphere model of interactions|eads to the collision frequency
for agiven particle of internd state with particles of internal state j and density V; (x) given
by [€]

vij = Nj(x)wd3; (vr(x)) (96)
where d;; = (d; + d;)/2 is the average hard sphere particle diameter and (v, (x));; isthe
mean relative velocity of particles i and j. If the masses are equal, that ism; = m; = m,
then in the absence of any net relative velocity for each state, the vel ocity assumes the thermal

value
Uy = /16kpT /Tm. (97)

The quantum formulation of the cross section is then given by the substitution ﬂdfj = 0ij,
where o;; = 4ma?;(1 + d;5). Itisconvenient to define the local equilibrium distributionsas

nis? (x,p) = Ni(x) exp (—(p — ((pi) + (p;))/2)? /mkp(T; + Ty)), (98)

where T, = T;(x) and (p;) = (p:(x)) are average local temperatures and momenta
Summing over the contributionsfrom both interna states gives

730, P)leant = = (v ()10 (Ni(x)/2) (mi(x, ) = nfi” (x,p))  (99)

— (0r(x))i303 N (x) (mi (x,p) = n5” (x, ) (100)

where the factor of 1/2 is necessary to prevent over counting when determining the total
collision rate between identical particles. This form of damping conserves the collision
invariants and also allows a further simplification. From the definition of the moments we
have the identities

Ni(x)(p1) + Na2(x)(p2) =

x)(p) =0, (101)
N1 (x)(p) + N2(x)(p3) = ?

). (102)
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so when the densities remain approximately similar it isthen reasonable to set (p1) + (p2) =
0, and make the replacement 71 + 7> = 27 in (98). If we assume that each momentum
distribution is never far from its own local equilibriumwe may also neglect (99), so that the
damping only arises from collisions between distinct states. Thisleadsto

m(X, p)lcoll =
— (0r(x))12012 (Na(ma (x,p) = {5 (x, P)) = Mi(mo(x,p) = n” (x,p).)  (109)
which may be written as
< (—p?
o, Bt = — (o () 1201~ 0 <m<x, p) - M 2 UL Lkl ) LY

when the term proportiona to n(x, p) — n%‘” (x,p) — ngef) (x,p), which is very small, is
neglected. This means that the segregation momentum distribution relaxes at approximately
the same rate at which each distribution would relax under the influence of collisions with
the other internal state. Reducing thisto an effective one dimensiona rate requires that the
distributionsbe radially averaged. The result is simply the above form divided by the circular
transverse cross section 7(2+/kp T /mw?)?. Using the thermal relative velocity, the collision
term isnow simply

—p?/2mkpT)
ol - 2 [ )
m(z, )| colt ajows ﬂkBTN(x) (m(x,p) M (z) NorTT (105)

The prefactor determines an effective segregation relaxation time at the center of the trap of
~ 30ms for the experimental parameters.

If there are coherences present between the two components the above arguments are
not complete because the coherence amplitude provides an additional damping effect. It is
not a priori clear what sort of relaxation approximation should be applied to the coherence,
although the Cauchy-Schwartz inequality for the system leads to

|F(x)[* < N1(x)Na(x), (106)

so that it appears reasonable to damp the coherence with the same relaxation time
approximation used for the ordinary distributions. In our simulations we ssimply damp
al fim(x,p) a@ the same rate, but we modify the rate to find the best agreement with
the experiment, since at this level of approximation the damping rate is effectively a free
parameter of the model. We find increasing the damping rate by a factor of 2 gives
reasonable agreement with the experiment. Better agreement could be found by optimizing
this correction for each experimental run, but thisnot been pursued here.

5.5.2. Effect of relative velocity It is apparent from the experiment that in some regions of
the gas the relative velocity of the two states becomes comparable to the thermal velocity
during segregation. We treat the effect of relative velocity between the two distributions
by including this into the calculation of the collision time 7. The average relative velocity
between particlesin state i withthosein j at x is

(vr(x))ij = / d*p / d3p’m(x’;)z$f((:)7z1\)r;)(l>g_p/l (107)

UsingQ = p + p’, 9 = p — p’; assuming the momenta are distributed according to
ni(x, p) = N;(x) exp (—a(p — 1‘)1-(x))2)(oz/7r)3/2 (108)
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Figure 1. g(z) and its asymptote.

where a = 1/2mkgT, and choosing the mean local momenta to be aligned with the = axis
pi(x) = pi(x)%, the average is
N Ty S R 0Q? (B + B
(vr(2))ij = 5= exp (~a(pi® +5;%)) [ d°Qexp (-aQ?/2+ Q- (Bi + B;))
< [ @alal exp (~aq?/2 +aq: (b: - p). (109
where the temperatures of the two components are treated as equal. Since the integrals are
spherically symmetric
3
a/m — 52 +p> = = = =
(r(@)yis = o0 450) g /2, ol + Bl /2, ol — B ) (110
where I (a,b) and I,(a,b) are discussed in Appendix B. In terms of the average thermal
velocity (97) thefina resuft may therbe

ritten as

Eazl
- : 111
- m) (111)
- where 1
z) =2 - ZmQ)Merf(x)> . (112)
~ T 2
g(0) — 1this reproduces the stand

ard result for a single component gas, and for the

case‘where there is no mean relative motjon of the two interna states. In the high relative
velocity limit obtained by setting ¥;(x)

0 limitgle) — \2w/4z yi@lds 4

X

= —v;(x) = %v(z) with o, < o(z), the large =
5

(vr(2))ij — 20(x).

(113)

Figure 1 shows the simple interpolation given by g. The effect of relative velocity on the
relaxation may now be included by substituting (111) for the thermal result used in (104).
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5.5.3. Variation with temperature Since g(2) ~ 2, when the axia relative velocity is
/70, ~ 1.7v, the damping rate will be doubled. For the JILA experiment the modification
is somewhat |ess because the thermal velocity is of the order 7, ~ 20 mms™—!, whereas the
rel ative segregation velocity may be estimated to be at most ~ 15 mms ™1, corresponding to a
50% increase in damping rate. Thisis expected to be important for the spin wave experiment
since coherence damping has significant effects on the motion, and the coherence damping is
also modelled using asimplerel axation time approximation. Moreover, if the experiments are
attempted at higher temperatures this effect becomes more significant because the timescale
for initiation of segregation scaleslike~ T—1/4[5], and thecloud lengthscaleslike~ T'/2 so
that the segregation vel ocity must behave like~ T%/4, whereas thethermal velocity scaleslike
~ T'/2, so theratio of the segregation velocity to the thermal velocity will be proportional to
~ T'/4, Clearly this correction will become relatively lessimportant for lower temperatures.
To find the effect of reducing the temperature on the coherence damping, we may
compare the temperature dependence of the rates (100) and (90) with (94). In particular
(100) and (90) are proportiona to v/kgT' N (x). The ratio of cubic to quadratic relaxation
rates will vary as NT—3/2, so that this process is expected to become more significant at
lower temperatures. Since the peak density also variesas T—3/2 theratiowill vary as7 2. In
particular, if the temperature is reduced by afactor of 3 for the experimental parameters, the
quadratic and cubic rates (90) and (94) will become similar. The cubic collisionterms (91) will
be important in thisregime, and in the simplest approach, the relaxation time approximation
(100) would need to be modified to account for the rel axation caused by (91), with u;; ~ 2.
One could a'so carry out moment equation cal culations similar to those of Nikuni [9] for the
cubic contributionto the damping in linearized spin equations, but this not pursued here.

6. Simulations

To simulate the experiment the equations (13,14,15) are reduced to an effective one
dimensional description, and damping is included by adding the simple relaxation
approximation term (105) to the resulting equations of motion.

6.1. Smplifications

The high anisotropy of the trap and low densities used alow the a reduction to a quasi-
one dimensional mode! starting from a noninteracting initial condition. We may aso take
N (x) = 0 as seen in the experiment, and verified by our simulations.

6.1.1. Initial motion The state of the gas before the =/2 pulse, given by the Boltzmann
distribution

(%, )l = N exp ( B QTzZT - Vi(x) 4};2?}11N(X)> (114)
for the singleinternal state |1), isthe stationary solution of the equation of motion
A(x,p) = {~(p/m) - Vx + V(Va(x) + 2u11 N (x)) - Vp} n(x, p). (115)
We may therefore neglect the density dependent effective potential 2uy1 NV (x) if
2u11 VN (x) _ 2u11 N (x) < 2u11 N (x) <l (116)
VVi(x) kT + 2u11 N (x) kT
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For the densities used in our simulations 2u;; N(0)/kT ~ 0.02 alowing the use of the
noninteracting initial condition. After the pulse the system consists of an equal superposition
of two internal states inidentical external configurations, so we simply use

2 Vi(x
n(x,p)lt=0 =N exp < — Qrsz - le(T) >, (117)
m(x,p)|t=o = 0, (118)
FOPleco = 3205 D)o (119

6.1.2. One dimensional equation The high aspect ratio of thetrap (33 : 1) means that there
isa separation of timescales, leading to a physical transverse averaging of the atomic motion.
This means that we may average the distributions over radial coordinates and momenta
and find a one dimensiona equation of motion. The only change is that the interaction
strengths are divided by the transverse cross section of the sample given by 7R% where
the transverse radius R is two standard deviations of the equilibrium density. A typical
interaction dependent term has the form

8][(;’ P) =u G(x)f(x,p)- (120)

All of theterms can be seen to be either of thistype, or to have no interaction parameter and
therefore to be unaltered by the radial integration. Putting
2

o) = 1op) (5

202 2\ /9% o T

y (¥> exp (—(p2 + p2)/2mkT),

2mmkgT
mw; 2,2 2
G(x) =G(x) Sy exp (—mw? (z® +y*)/2mkgpT), (121)
and integrating over radial momenta and coordinates|eads to
of(z,p) u
= G(z)f(z, 122
% = rameT ey S @) (122)

where the denominator isclearly the transverse cross-section of the sample, at aradius of two
standard deviations. The effective scattering parameter has the dimensions of energy xlength
required for aone dimensiona interaction parameter.

6.2. Thedifferential potential

The differentia potential described by the parameter v4;5 i defined by the experimenters[1]

as
1 h d21/12
= — | — , 123
Yt = o\l m < dz? > (123)
where the Gaussian wel ghted average of the frequency shift curvatureis

3z/2 2u1 z

d21/12 f 3//2 dz N )d—ZZ()
dz2 - 3z/2 ’ (124)

5 2z N(z)
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and z isthe half width at half maximum of the the axia density distribution
1 2 2
N(z) = —— e = /28", 125
®= Vo (129

givenby Z = R+/2log2, where R = \/kpT/mw?. It isapparent from Figure 2 of [1] that
we can accurately represent the gradient of the differentia potential in terms of a Gaussian
with amplitude A, defined as

Vaig (Z) = —AgN(Z). (126)
We then obtain A, using (123),(124) and (126), to find

f(37/2v/2R)
A — A B3, er
g = dmR mwia {ﬁerf(sx/zzz) + (3Z/R) exp (— (32 /2)2/R?)
~ AT R3mw3ig x 0.44. (127)
If we now expand (126) for small = we find
2
—AyN(z) ~ constant + % (wdig\/§(27r)1/4v0.44) 22, (128)

so that the true frequency near the center of the trap is ~ 1.49v4¢. Such a correction is
expected since the Gaussian weighting process will reduce the resulting vq;¢ by adding in
negative frequencies, if the range of integration is taken beyond the turning point of the
Gaussian N (x).

6.3. Results

Figure 2 shows the result of simulating equations (13,14,15) with vqig = 0.16 Hz, N(0) =
1.8 x 10'3cm—3, with the relaxation time approximation (105) modelling the damping. The
effect is very similar to that seen in the experiment [1]. In (&) and (b) the axial density profile
of the|1) and |2) states show aclear axial segregation of thetwo internal states. (c) Showsthe
decay of the coherence which causes the transience of the phenomena on the timescal e of the
experiment. Theinitiad conditionis shown for comparison. Column (d) is the phase of F'(x),
fromwhich it is clear that the relative motion tends to smooth out the relative phase gradient
that is caused by the differential potential Vg (x).

Figure 3 shows the results of simulations for the experimental parameters, with the
measured data [10]. The timescale for decay of coherence is well described by the smple
relaxation time approximation, with an extrafactor of 2. Theinitiationtimes, relaxation times
and amplitude of the segregation agree qualitatively with the experiment.

Figure 4 shows the variation with v, and the numerical results. We see here that
what is described as "higher order effects” are not well modelled by the simulation for
vair = 0.20 Hz. The initiation time and transience are still in good agreement but the extra
pesk in the center of IV, (x) does not emerge.

6.4. ‘Classical’ Motion

It is useful to consider the classical motion that would arise if the system could be prepared
withidentical initial state distributionsas constructed by thefirst 7 /2 pulse of the experiment,
while a so setting the coherence to zero. If coherence is neglected the initial condition (114)
ismerely adensity perturbation from the new Boltzmann equilibrium

2
p Vert (x) Vaier (x)
p) = —~ - R
n(x,p) NeXp( SmksT ~ kgl >cos ( T ,
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t (ms) N, (x) N, (x) Fool 0 ()
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Figure 2. Timeisin ms down the left column. N (0) = 1.16 x 103cm ™3, T" = 850nK,
vaig = 0.1. () and (b) are the densities of the two internal states in arbitrary units. (c) Shows
the coherence density, with initial condition for comparison, and d) shows the relative phase
between the two internal states ¢(x) = angle(F(z)); the plot rangeis [0, 27).

2
= Vel g (Yam(o)
m(x,p) = Mexp ( SmksT ~ kpT > sinh ( T ) (129)

The corresponding single species distributionsare
2
_ D Vi(x) + 2u11 N1 (%) + u12N2 (%)
’I’Ll(X,p) _Nl exp ( kaBT kBT )

2
_ D Va(x) + 2u2oNa(x) + u12N1 (%)
n2(x, p) = N> exp ( kT TT

(130)

for appropriate normalizations A; and 5. We have seen in section 6.1.1 that the interactions
have a negligible effect on theinitia condition, and similar reasoning shows the equilibrium
segregation after the pulse is negligible for the densities used in the experiment [1]. It
follows that the classica motion towards the new equilibrium would be small, as long as
the fluctuations caused by the perturbation are also small.
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Figure 3. Measured N1 (z), with simulations (dotted line) for vq;¢ = 0.1 and peak densities
listed at the foot of each column. Timeisin ms down the left column.

7. Spin waves and atomic motion

In the experimental report it is asserted that the motion observed must be due to actual
physical motion of the atoms since energy conservation would seem to prohibit spontaneous
interconversion of theinternal states [1]. In this situation ‘motion’ refers to the redistribution
of the atomic density in the trap. The issue is whether or not it is possible to distinguish
between two interpretations: The apparent motion isthe result of either

i) Transport of the atoms in the relative phase gradient arising from the Zeeman and mean
field effects, or

ii) The coherent interconversion of theinternal states as aresult of the interactions.

In defence of the first picture, it has been suggested in [1] that the rate of segregation can be
accounted for if the small differential potential is somehow amplified in a coherent collision
processes which channels the thermal energy of atomsin a particular direction. In the second
picture, the collisions between the two different internal states are interpreted as causing a
rotation in pseudo-spin space of the spinor wave function for the two state superposition of
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Figure 4. Measured Ni(z), with simulations (dotted line) for peak density N(0) =
1.8 x 1013 cm™3 and vy listed at the foot of each column. Time is in ms down the
left column.

the field operators.

It is important to note here that if the transport terms are neglected in the equations of
motion, segregation does not occur. The equations of motion for the densities are found by
integrating the equations of motion (13), (14), (15) over momentum which leads to

N(x)+ V- (N(x)vy(x) =0 (131)

M(x) + V- (M(x)var(x)) =0 (132)

Fx)+ V- (FXvr(x) = —iwr(x)F(), (133)
where the velocities are, for example

VN = m]\}(x) /dsp p n(x,p), (134)

and the Ramsey frequency iswg(x) = Aw.(x) + Aw,(x).

If the transport terms are neglected the vel ocities vanish, and no change in the densities
can occur—the only effect is to make a redistribution in momentum space. Inclusion of the
transport terms then trangl ates this redistribution in momentum space into a redistributionin
position. In this sense, we agree with the view of [1] that the segregation is caused by actual
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motion of the atoms. The effect is however quite large, since it involves more forces than
simply the classical forces induced by the gradient of the differentia potential, namely the
forces caused by the production of a spatially dependent phase of f(x,p), as seen in the
second line of (15).

8. Comparison with other work

While preparing this work severa other papers on the JLA experiment [1] have appeared
[3, 4, 5]. The works [5, 4] use essentialy the same formalism as our own, with slightly
different degrees of approximation. In [5] the simulations agree with experiment to the same
guantitative degree as our own, although they obtain better resultsfor the variation of v, in
particular we do not see higher order effects for the highest value vq;¢ = 0.2 Hz as reported
in the experiment and found by Williamset al [5]. In [4] the simulated initiation times appear
more rapid than seen in the experiment. Our results show better agreement for this feature,
which may be because we have inverted the curvature averaging process used to characterize
the differentia potentia. In [5, 4] the timescale of initiation for the segregation is found
analyticaly, and in[5] itis noted that thisalso givesthe position of the nodes of M (x). In[3]
aso called Landau-Lifshitz equation of motion was obtained, and solved numericaly, finding
qualitatively similar behavior, athough the timescale of evolutionis significantly longer than
that observed in the experiment.

More recent work at JLA [8] has focused on providing data for a collective mode
analysis which has been carried out by Nikuni et al [9] using a truncated moment equation
approach. In this experiment the differential potential is controllablein red time, so that a
small amplitude fluctuation may be excited, and the potential gradient then set to zero for the
remainder of the motion. The same relaxation time approximationis used to that derived here,
and the simulations of [9] show excellent agreement with the data of [8]. Some discrepancy
isfound for the quadrupole mode in the regime where Landau damping is the dominant form
of dissipation, and the authors note that the details of the trap are likely to be important in
describing this process accurately.

9. Conclusions

We have simulated the JILA experiment using the Wigner function approach and found
reasonable agreement with the data of [1]. We have discussed the Ramsey frequency and
the local transition frequency for this system, and emphasized the difference of the two,
finding that the Ramsey technique isinsensitiveto the decay of coherence. A relaxation time
approximation for the experiment has been derived, including the effect of relative velocity
whichisexpected to beimportant for higher temperature experiments. A Quantum Boltzmann
collision term for two species with arbitrary S-wave interaction strengths was found, and
we evaluated the effects of scattering on the coherence for non-condensed 8"Rb using a
Boltzmann equilibrium form for the momentum distributions. It is apparent that the cubic
terms in the collision integral depend on the phase space density and will be important for
more degenerate regimes.
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Appendix A. Continuum limit

The derivation of (84) from the terms (82) and (83) issimplified by theidentities of the form
> 5(Aw(@) (U], (@) htbmic, U@ = Y 8(Aw(e))([Uis(e), thctbudUf,(e)

ijlJ,e ijlJ,e
(A1)

so that (82) and (83) are complex conjugateswith I <> m. The Quantum Boltzmann equation
(84) isthen obtained by using

fin(8) = ()3 Tefomtthmc)
N

= () bt (a2

so that the commutators may be evaluated and we may carry out the procedures in [7] for
passing to the continuum limit. This involves factorizing the operator averages and using the
local equilibriumforms

(e, (X mic, (x')) = (< =) fim (" = K> K, K, (A3)
(e (9, (0)) = 0= x) (ot (557K ) i) s (n)

and the continuum limit of the summation
T 3
3 (—) Ma(K + K, — K3 — Ky)

A
K2 K3,Ky
PKy | d’Ks | dPKy
K+K2 - K3 — Ky), (A.5)
where

1 [sinAz] [sinA sin Az
g(x) == [ ] [ y] [ ] , (A.6)

T T y z

and Ma(Q) is the approximate delta function arising from the factorization of operator
averages

/ d*y / Py's(y)ely)gly — y')Pe @)
—H< > { 0Q:,0 + (5Q,A+ 6Q1_A} (A7)

(This corrects an error in Egs. (128) and (129) of [7], which led to an extrafactor of (27)3 in
thefinal Uehling-Uhlenbeck collisionterm (132)).

Appendix B. Integrals
Some useful integrals for this paper are
2 I o]
Io(a,b) = / de / df sin 6 / dQ Qe 2Q +bQcosf (B.1)
0

- 27;\[ <2 f) exp (b2 /4a) (B.2)
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and
27 ™ e}
I(a,b) = / do / df sin@ / dq ge— 09 Thacos? (B.3)
0 0 0
27Teb2/4a
where
g(x) = e;x (m +(1+ 2w2)¥erf(w)> . (B.5)
Defining
g ()32 2
B(p) = (27h)* (Z) " exp (~ap?) (B.6)
theintegra
d*Py d*P3 d*Py
3
134 = / d Pl/ 3 / 27Th)3 / (27Th)3B(P3)B(P4)
X 0 P1 + P2 — P3 — P4)(5(61 + € — €3 — 64) (B?)

isfound by using thetransformation Q = P, + Py, q = P; — P, to obtain

LM—% O‘ /d3Q/ d?’K/ d*q /d3k exp (—a(Q* +q?)/2)
x 6(q?

= g (2) Tale/2.0)1,(0/2.0) = NES S ®9

Theintegral 1234 isfoundinasimilar fashion as

d3P 3P, AP, ,

Lsa = P, B(P,)B(P3)B(P

- /<27Th)3/ (27rh)3/ (27rh)3/d 1 B(P2)B(P3)B(P4)
XO0(P1+Py—P3—Py)d(e; + €2 — €3 — €4)

V3
T AnkpT’

(B.9)
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