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Abstract. A linear theory for the heat conduction in a spherYarkovsky effects (Farinella et al. 1998, Hartmann et al. 1998),
ical, solid and rotating body illuminated by solar radiation i#hich lead us to reconsider the importance and develop a precise
developed in detail. The principal aim is to compute the recariodelling of these thermal orbital effects.

force, due to thermally reemitted radiation, which is commonly _ _ _

known as the “Yarkovsky force”. We concentrate on the thermal 1h€ Present series of papers is devoted to a special type of
effect which depends on the rotational period of a body ratHifermal effects — the so-called diurnal effect, which depends
than on the period of revolution around the Sun and deal with the rotat|opal pe“o‘?' of a body. Farinella et al. ,(1998) con-
the general case of an arbitrary obliquity of the spin axis to thi'ded that this effect is most relevant for the delivery of two
orbital plane. This “diurnal” thermal effect is considered to pnPortantclasses of bodies: (i) submeter stone bodies which are
an important source of mobility for meter-sized stony asteroid¥e MOost frequent parents of meteorites, anc2(ii)- 70 meter
fragments in the main belt. We compare our results with tho&80!ith covered bodies which, interestingly, are overabundant
of previous authors and show that the results of Peterson (1031°N0 the near-Earth objects (Rabinowitz 1993, 1994). A first
are accurate for meter-sized asteroidal bodies (although he Uggtment of the problem of the orbital perturbations due to the

unrealistically long rotation periods). diurnal effect was given by Vokrouhligkand Farinella (1998a)

(see also Afonso et al. 1995, but notice discussion below). They
ﬁ:_onsidered the interaction of these objects with thaeso-
nance at the inner edge of the asteroid belt. Our present aim is
to develop a complete numerical model allowing to include both
gravitational interactions with all the planets and a full treatment

) of the diurnal Yarkovsky effect in any region of the asteroid belt.
1. Introduction Afirstissue we face in this program is a proper modelling of the

The Earth’s vicinity in the solar system is by no means an emd tantaneous thermal fqrce. This paper devglops such atheory.
space. A number of small objects of sizes ranging from kilomELrst: however, let us briefly recall the previous work on the
ters down to micrometers, with a typical power-law distribution/@rkovsky effect in celestial mechanics.

cross the Earth orbit (Rabinowitz 1993, 1994; Ceplecha 1992, 11 modern history of the applications of the thermal re-

1996). It has been recognized long ago that these objects g torce in solar system dynamics begins with a classical pa-
relatively short-lived, and are being permanently replaced b)bgr by Opik (1951). He is also at the origin of an interesting
population of similar objects from the outer regions of the SO, stery” surrounding the effect. Referring to an unpublished
lar system. Their most prominent sources are the asteroid lb%{ phlet of an unknown Polish/Russian engineer Yarkovsky,
and the short-period comets. Transport mechanisms by meérﬁk decided to name this effe¥arkovsky effedh his honour.

of which such bodies can _be deI_ivered to the Earth’s neighbowz ¢ performing any precise calculatioipik gave some
hood have been studied intensively over the last decades. Jgj; estimates for the magnitude of the effect. Interestingly, if
crucial point has been the recognition of a special role of the . disregards numerical factors of the order of urtigik's

mean-motion and secular resonances in the main asteroid pelf ts are in full agreement with today’s models, at least for the
(e.g. Morbidelli et al. 1994, Gladman et al. 1997, Miglioriny; ,inal effect (see below).

etal. 1997). However, several issues remain to be understood in

order to fit all observational data. In particular, it has been re- Radzievskii (1952) then presented the first detailed, mathe-
cently argued that the fast transport by resonant effects (on timatical study of the thermal effects on a sphere. Unfortunately,
scales of a few Myr) must be necessarily preceded by a retés work is limited by two unrealistic assumptions: (i) the body’s
tively slower phase (on time scalesi®f— 100 Myr). The latter spin axis must be normal to the orbital plane, and (ii) the body
may be dominated by orbital perturbations due to the thermsglbigger than the depth of a thermal wave. These simplifica-
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tions made his calculations of little use for a further progress; Farinella et al. (1998) demonstrated that the diurnal
nevertheless his work remains a pioneering one. Yarkovsky effect may play a very important role in the dy-

Radzievskii's work was followed by Peterson (1976)r_1§1mics of stony fragments of asteroids, especially in the ap-

Though his analysis was much more detailed, he actually 1qatiqns to meteoritips (i.e., fo.r metgr—sized bodies) and in
cused on aspects of the thermal effects which have little r8€!IVering Tunguska-sized cosmic bodies (10 to 100 m across)
evance: for instance, he analyzed in detail the complicat'é) the Earth’s vicinity. However, their discussion of the diurnal
second-order solution of the heat conduction equation in a cylfffiect Was based on Peterson's results, and they did not try to
der. However, from what we presently know in case of the Se%gvelop a more accurate thermal force model. The development

sonal effect (e.g. Vokrouhligkand Farinella 1998a,b), the non° such model is the primary 903' of this series of papers.
In the present paper we give a complete formulation of the

linearity effects do not produce any new qualitative feature. For

“large” bodies they alter the amplitude of the thermal effecfiurnal Yarkovsky effect, in which we suitably linearize the
by about15-20%, whereas in the case of “small’ bodies th oundary emission term. Afonso et al. (1995) also computed

difference between the linear and non-linear solutions is geXPlicitly the diurnal Yarkovsky acceleration of a spherical frag-

low the 1% level. Peterson realized the importance of deri\,mem’ bu;[ onlﬁ In th? alsslumptlon Fhat thfe fragment'ﬁ.s.pln axf|s
ing at least some estimates for spherical bodies, and inven2ormal to the orbital plane. Owing to frequent collisions of
a clever (though somewhat cumbersome) method of convert ﬁ%gments, resultmg n Cha?”ges .Of the orientation of their spin
the results for a cylinder to a sphere. His results, like those Bf¢S: the very special configuration considered by Afonso et al.
Radzievskii, were correct for “large” bodies only, and he hdaunrealistic and thus their formulation is incomplete. Since the
to follow the qualitative arguments 6ipik (1951) to get infor- typical t?me scale for the char_lge of the spin axis or_ientation of
mation for “small” bodies. Yet his work may play an importan'EnEter's,'Zed stony fragmen@s is a few Myr only (Fa_rlnella etal.,
role in application to meteoritics. He was almost alone in adva-ggls)’ in order to progresi ina nlu?encal exploration of the or-
cating the relevance of non-graviational dynamical mechanisi&! Perturbations due to thermal effects on meter-sized objects,
at that time, and the introduction to his 1976 paper still givé(%e need_a for_mulatlon Whlc_h allows for any mutual 0r|entat|on
an interesting historic and conceptual discussion. Influenced®yin€ SPin axis and the orbital plane. The results which we are

Peterson’s work, Burns et al. (1979) reserved a special chaﬁi ing tc_> present and discuss are valid for an arbitrarily oriented
to the thermal effects in their comprehensive study of radiativ8'" X!S-

forces in the solar system.

Despite the progress mentioned above, one major point tadl heory
beer_1 mi.ssi_ng in allthese studies of the thermal effects (although  eneral formulation and linearization
the firstindications of new concepts may be traced back to Burns
etal. 1979). Interestingly, a key inspiration for a generalizatidihe heat conduction in a solid medium is described by the
of the classical Yarkovsky effect came from the investigatigparabolic equation (often called Fourier equation; e.g. Landau
of the motion of the artificial satellite LAGEOS, whose orbiand Lifchitz, 1986)
is perturbed by thermal effects similar to those affecting the
small natural bodies in the solar system (see e.g. Rubincati— = KV>T | (1)
1987, Vokrouhlick and Farinella 1998a). The reason is that
LAGEOS has an important well-known property: a very fastielding a distribution of temperatufethroughout the medium
rotation (e.g. Farinella et al. 1996). Rubincam (1987) thus dat-any timet. V2 is the Laplace operatok is the thermal con-
veloped a “LAGEOS-taylored” technigue for computing theiductivity, C the specific heat angthe density of the material. In
mal force perturbations on a rapidly spinning body. If, say iprinciple all these three parameters may be temperature depen-
1990, we had tried to compare models of thermal effects actidgnt, which would result in a more complex form of the heat
on natural solar system bodies and models applied to LAGE@®nduction equation. However, in this paper we shall neglect
we would have been surprised by a number of different assuntipese phenomena and adopt average quantities of the physical
tions and techniques. Yet, in both cases the physics is essentipélyameters over the temperature range involved.
the same. Eqg. (@) must be supplemented by an appropriate boundary
Rubincam (1995) first tried to reconcile the modelling Oq.onstraint atthe surface of the body and by the condition that the

thermal effects in the two cases. He applied a LAGEO >mperature is regular inside the body. The boundary condition

like modelling to the case of asteroidal fragments, after ha@_provided by the conservation of energy and is given by

ing checked the physical consistency. A similar approach led
Farinella et al. (1998) to reconsider the concepts of large el + K (
small size and slow vs. fast rotation of the fragments, both in-

troduced by Burns et al. (1979). The variety of possible thermEte first term on the left-hand side accounts for the energy
effects was found to be larger than recognized before. Regattermally reradiated by the body (the isotropic Lambert’s law
ing the orbital effects, a new classification based on “diurnal assumed)e¢ is the emissivity andr the Stefan-Boltzmann

vs. “seasonal” variants was suggested. constant; the second term gives the energy conducted to the

n~?§>a€. (2)
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deeper layers of the body, withthe unit vector normal to the for the scaled mean temperatureli§ = T,,/T = 1/v/2

surface of the body. The right-hand sidddf (2) gives the radiatigee also Rubincam 1995, 1998), while has a meaning of a

energy entering the unit surface area of the body per unit tinseibsolar temperature. By the way, we remark that Afonso et al.

with o the absorption coefficient arttl the external radiation (1994) missed this point and cho%g, = T,. Secondly, the

flux. above-mentioned choice of variables reduces the number of pa-
A general solution of Egs[1) andl(2) is fairly complicatedameters in the transformed equatidds (1) &nd (2) to a minimum

even ifthe geometry of the body is simple (plane-parallel, spheet, particularly the thermal parameey

ical etc.). The non-linear, fourth-power emission law in the first

term of [2) is the main source of difficulties. A standard tecly — Ivw , (6)

nique to handle this problem is based on the assumption that eol?

the temperature throughout the body does not o_Iiffer muc_h fr rel" — \/sCK is the thermal inertia, and the scaled radius
some average value. Hereafter we shall adopt this apprommatbqﬂm bodyR’ — R/l,. The thermal parametérdefined above

_T_?]d split thte tempe:ature |r_1”tlr)1e f(;llowmg Wﬁ%}\:ﬂ%" 5 %T' differs by a factor of the order of unity from similar quantities
e mean temperatuiig, will be chosen suc < Tav- introduced in the literature. Notably, Petersofsvariable is

If the previous condition is fulfilled, we can linearize the emis-, _ (. 3/4 . .
siontermad™ ~ T2 +4T3 AT +.... Neglecting higher-order given by P = (W. /\/? © (Peterson, 1976), while Farinella
. i thi o o ol 0 treat th bl nSt al. (1998) defin®,, = (v/2/7) ©.
erms n this expansion aflows us to treat the problem analyti- Adopting this new set of variables, the heat conduction
cally in proper variables, which follow from symmetries of th% .

. ) g. (@) has the following form
body. Assuming spherical the fragments, we shall use spheri-

cal coordinategr, 6, ¢). The originr = 0 coincides with the . 0

/ /. . j—
center of the body and the colatitudés measured from the ZC@? AT'(r'30,¢;¢) = (7)
fragment’s spin axis. The origin of thecoordinate, which will 1 o o 0 "
be discussed later, depends on an appropriate coordinate frame. = 3 {ar, (T 8r’> + A (8, ¢)} AT'(r";0, ¢ C)

2.2. The most suitable variables with the operatod\(9, ¢) given by

Before embarking on the solution of the problem a carefyl g 4) — 1 {8 (sin@a) .1(9;;} _ (8)
S

choice of variables is necessary. Following the previous work sinf | 00 00
(Spencer et al., 1989; Vokrouhligland Farinella, 1998b,c), we

Theli ized bound ditidnl (2 d
adopt the following set of the non-dimensional quantities: ¢ linearized boundary conditidl (2) reads

/
— the radial coordinate will be scaled by the thermal lengthv2AT’ + © (%A,T ) = A&, 9)
I, given by L
% where the right-hand term is defined 8= 1 + A£’. Here,
ls=]—, (3) the first term,&], = 1/4, is the averaged irradiation of the
pCw fragment’s surface which determines the averaged temperature

mentioned above:s T = a&,,. The expansion of the source
term A&’ deserves a special care and is related to the reference
systems which will be used in the following. Notice that this is

a major issue which was not properly solved by Afonso et al.
¢ = exp(iwt) (4) (1995), and we devote the next section to its discussion.

and shall be denoted by = r/I;, w being the angular
velocity of the fragment'’s rotation;
— the timet will be replaced by a complex variabfegiven by

(herei = y/—1 is the imaginary unit);
— the temperaturd will be scaled by an auxiliary valug&, 2.3. Radiation source term

defined by The principal reference system in which we shall solve the heat
eocT? = aé, , (5) conduction problem is rigidly rotating with the fragment. dts
axis is aligned with the unit vectarof the fragment’s spin axis
where¢, is the solar radiation flux at the position of theynq the;-axis is chosen so that the Sun lies in theplane at
fragment. The resulting non-dimensional variable will bge instant — 0. The unit position vector of the Sung, in this

denoted byl” = T'/T,, and similarly we defineAT’ = system has the components
AT /Ty,
— the energy source teréin the right hand side of{2) will %C sin 0y
be scaled by the reference fléix, so we defin€’ = £/€,. mno = | 5(sinfy | + C.C., (20)
cos by

Some comments are appropriate here. First, the auxiliary
temperaturd’, should not be confused with the mean tempewheref, is the solar colatitude and.C. is a complex conju-
atureT,,. Later on we shall see that the most natural choicmte quantity. A crucial point here is the time variability of the
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quantities in[(ID). In the case of the diurnal Yarkovsky therm#ie thermal force, which contribute to tAe&’ source, are those
effect weassumehat the solar colatitudg, in (10) is constant. of the dipole part.

This means that the thermal response of the fragment is lo-
cal or “instantaneous”, because the spin period is much sho e
than the orbital one. On the contrary, in the case of the seasonal
Yarkovsky thermal effect one assumes a variable solar colatitutliger having discussed in detail the source term, we are ready
and averages ovél(i.e., the rotation of the fragment). These are find a solution of the probleni](7) with the surface condition
the two extreme cases of the Yarkovsky thermal effects. Mof@). First we determine a general form of the solution which is
in general one should assume thats time-dependent and still regular throughout the bodly.

the source term\&’ is not averaged over the fragment's rota-  The linearity of the heat conduction EJ (7) allows us a
tion. In other words, one should deal with a generic mixtugbnvenient separation of the variables. Thanks to the spherical
of the diurnal and seasonal Yarkovsky effects. In this paper wgstem of coordinates we observe that an expansion in spherical
adopt the deal with the diurnal case only, and therefore we uggmonics is the best choice. Thus, we write

the approximation of a constant solar colatitdége

Regular solution satisfying the boundary condition

ation source torh” n (B). Gnen a surtace sloment wih 5T (6.0 = 3 30 GO Vul6.6).  (16)

unit normal vectom(6, ¢) = (sin 6 cos ¢, sin @ sin ¢, cos 0)7, n2l k=-n

we have Considering the properties of the coefficients of the source terms

E" = n(0, ¢).ny(b,¢) if (n.ng) > 0, expans?on[C[]Z),_ we reallize thet, (r';¢) = 7, (") ¢*, wherg
=0 otherwise. (11) the radial functions satisfy the system of decoupled ordinary

differential equations
Obviously, it would be too cumbersome to work analytically
with such a piecewise-defined source function. Moreover, gs ¢ <T/2d> —[n(n+1) +Z-,W/2]} () =0. (17)
we shall see below, we do not need the whole information aboutdr’ dr’ ”k

&’ for computing the thermal force. It is suitable to represe

(IT) in a spherical harmonics expansion

E" = n(0,¢).n(0o, <) o . for b — 0 (18)
n Toe(r') = cpr'™ or k=0,
D7D ank(0,¢) Yur(6,6) , (A2) 7. (') = carjn(V=ikr’)  for k+0, (19)

n>0 k=—n

Iinheir general solution, which is regular inside the body (i.e. at
r’ = 0), reads

wherej, (z) are the spherical Bessel functions of ordénote

the complex argument). The constants,, andc, are to be

determined by fulfilling the boundary constraint (9).
Substituting[(IB) and {19) int@1(9) we find

from which only the monopolen( = 0) and dipole ¢ = 1)
parts will be relevant. One can prove the relation (6o, () =
bni(00) ¢*, a particular case of which is

™
boo = agg = vr (13) b 1
2 Cn = 7 (20)
for the monopole coefficient, and V2R™ 1+ nA
bnk 1
™ Cnk = )
big(0p) = 4/ = cosfy , 14 2 jn (V—1ikR’ _z _d
10(00) = 4/ 3 0 14) V23, (V=ikR') {1 T A 3in(2) p—
[ . 21
b1i1(90) = F 6 SIIIQ() (15) ( )

] o ) ) where) = ©/v/2R’. As noted above, a special attention has to
forthe dipole coefficients. The besttechnique to obtain Egs. (144 paid to the dipole part, = 1. For this purpose we introduce

and [I5) is to compute them for the special cése= 0 (the 5, auxiliary functiony(z), defined by
solar direction along the fragment’s spin axis) by simple quadra-

tures. Thenthe general case is determined by a transformation of z d .
the right-hand side ofT12) to a new system, with a given solar™ ¥'(2) = (2) @Jl(z) : (22)
direction. The formulae for the transformation of the spheri-
cal functionsy,,;, using Wigner's matrixes are discussed in th©ne can easily verify thdi)(z)/z] is nonsingular at = 0.
standard textbooks of Wigner (1959) and Edmonds (1974). In
the astronomical context we refer, for instancdéiuﬂichovsk'/
(1983).

Recalling thatYyy, = 1/(2y/7), we observe that the Putting together all the previous results we find that the gen-
monopole term in[(12) represents exactly the averaged irradéaal solution for the surface temperature of an arbitrary element
tion of the fragment. The important terms for determination afefined by spherical anglésand¢ is given by

2.5. Complete linear solution
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AS n b11(6o)
1+ 25 ¢ (V—iR)

+ second and higher order ter}ns

Y11 (19, QD) + C.C.

Note a slight, but important difference between formulag (23)
and [24): the latter does not depend on time throggfihis
is clearly due to the fact that in the source-oriented coordinate
system the surface temperature has to be stationary.

Next we introduce the auxiliary real functiodgz), B(x),
C(z), D(z) andE(x), plus a phasé(z), by

1 _ A(z) +iB(x)
1+ $35¢(z)  Cla) +iD(x)

= E(x)exp[id (z)] , (25)

with z = /—iR' andz = \/2R'. After some algebra one finds
explicitly

Alz) = —(x+2) — e [(x — 2)cosz — zsinz] , (26)

B(x) = —x — € [xcosx + (v — 2)sinz] (27)

Clz) = Ax) + 1% v (28)
{3(x+2)+€"[3(x—2)cosz +x(x—3)sinx]} ,

Fig. 1. Coordinate systems and variables introduced in the text. The A

xyz-system is rigidly rotating with the fragment, while tbeY Z- D(z) = B(z)+ T+ X (29)
system is fixed with respect to the Sun. The unit vectors are directed o= _ o o\ o

as follows: (i)s along the spin axis of the fragment, (i), to the {z(x+3) —e"[z(z—3)cosz —3(z — 2)sina]}

local position of the Sun, and (iix normal to the considered surfaceyith simple relations fo(z) andé(z).

element. The shaded region is not illuminated by sunlight.

2.6. Thermal force and related quantities

Having determined the temperature distribution on the frag-

1 ment’s surface, we can easily compute the thermal recoil force.
/ /. . —
AT(R;0,6;¢) = NeTT RSy, {bw (6o) Y10 (0, 9) (23) Assuming Lambert’s isotropic thermal emission as before, one
bi1(60) ¢ finds the following components of the thermal force per unit
11 2 o/ iR Y11 (0,9) + C.C. of fragment mass, projected onto thg Y and Z axes of the
+ 1TA¢( —iR) nonrotating system introduced above:
second and higher order terms i
i ? }“ x+ify = — 290 b oy (—idw) | (30)
9 "1+
In the previous formula we have not given in explicit form the fr = 4o o o8 bo 31)
quadrupole and higher multipole terms (although the required 9 " 1+A7

formulae are given above, these terms will not play any ro\llv%ereER, = B(VAR') andsp — 6(v3R'). The factord =

in computing the resulting thermal force). It turns out to be _, : i
convenient to transform the previous solutipn] (23) into a ne j &, /mc), wherem is the mass of the fragment andhe

S . . velocity of light, is the usual radiation pressure parameter on
reference system. This is a nonrotating frame, having4he .
N . , : a spherical body (see e.g. Burns et al. 1979). We note that the
axis aligned with the fragment’s spin vector as before. Xhe

axis is now oriented so that the solar position lies always in t gnaining factors in[(30) an@ (B1) yield the efficiency of the

X Z-plane. Spherical coordinatesin the new, nonrotating systs ermal recoil force when the latter is compared to the direct

. ) . . SYS*eBlar radiation pressure.
will be denoted by} andy. Their relationship to the previous . ;
coordinated) and ¢ is given by a trivial rotationz = 6 and The physical meaning of the thermal paraméidras been

o= 6+ wt (see Fighl). discussed by Farinella et al. (1998), who interpreted it as the ra-

Transforming the surface temperature distribution (23) inPc? ofthe thermal relaxation 'qme, requw_ed for the accu_mulatpn
: : ofthe absorbed energy and its reemission, to the rotation period.
the new coordinates we obtain

As a consequence, the lintit — 0, and therefore\ — 0, cor-

1 responds to the case of instantaneous reemission of the thermal

bio (6o) Y10 (9, ¢) (24)

/ /. _
AT'(R'39,¢) = V2(1+ X)) energy. This is normally interpreted as a simple diffusion of
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Fig. 2. Coefficients«1, k2 andks vs. the scaled radiuB’ of the body. ) .
The values derived by Peterson (1976), given by the dashed lines, m&ttgh 3- Normalized equatorial components of the thermal force vs.
reasonably well our results in the limit of “large” bodig®/(— oc).  the thermal paramete®. Curves 1 and 2 show fx/(4a®) and
9fy /(4a®), respectively. The radius of the body® = 500, cor-

responding to about.5 m for a stony fragment. Peterson’s (1976)
light on a macroscopic sphere (no diffraction effects; see, fef!ution (dashed curves) is shown for comparison.
instance, Milani et al., 1987; Vokrouhliglet al. 1993). We can
easily check that'g/ cos g — 1 whenX — 0, which results
into

LI\IIIIIl T IIIIIII| T T TTTIT
~
N

Ny 1

i

4 L -
- dng (32) -7
) 10" ’

and obviouslyfy- (A = 0) = 0. The force[(3R) is just opposite
to the local solar direction, as might have been expected, and

f(A=0)

T IIIIII|
A
| IIIIII|

magnitude is justa/9 of the direct radiation pressure. - )02 .
One can see that the equatorial thermal force compone .| ’ -
(fx, fy) in (30) are rational functions of (and consequently £’ 3
of the thermal paramet&). A little algebra yields r ]
4o . 14+ K10 P
fX:_?¢81n901+2H1@+K2®2 ? (33) 103 1 1 IIIIII| 1 1 IIIIII| 11 IIIIII| 1 1 IIIIII| INT L1
-2 -1
4o K30 10 1 10 100 1000
=—— ®sinf 34
Ty 9 = M TI00 0 + R0 (34) o

where the coefficients;, x, andxs are functions of?’. Note Fig. 4. The same as Fig. 3, but for & = 1 body, corresponding
that this result is in agreement with Peterson’s (1976¢Rgud to aboutl0 um for a basalt particle. A significant discrepancy with
proximant representation [Eq. (26) in his paper]. However, P@spect to Peterson’s results is apparent now, mainly in the transverse
terson obtained the values for these coefficients numerically/@fFe componenty, as discussed in the text.

the limit of large bodiesR’ =~ oc) only. One can easily check

that there is a rather good agreement between our results and

those of Peterson, by taking the corresponding limit in our for- Figs[3 an@¥ show the dependence of the “equatorial” force
mula (33). Fig_2 shows the dependencé®nf thex coefficient components'x and fy on the thermal parametér. The for-
(solid curves) together with the limit values at lafgeobtained mer figure has been derived for a large bo&y £ 500), which

by Peterson (dashed lines). Note also a significant increaseaofording to Farinella et al. (1998) corresponds to a stony frag-
the quadratic coefficient, in the denominator at smalt’, as ment aboutl.5 m in radius. We note again a good agreement
well as a significant decrease of the numerator coefficignt with Peterson’s (1976) approximation shown by dashed lines.
for the transverse force component. Both these results havé\sthe body becomes smaller (Aig. 4, corresponding'te- 1),

do with the important fact that thermal effects are inhibited fave can remark a significant difference between the results of the
small bodies, due to more efficient heat conduction across théwo approaches for thé, component. This is consistent with

In other words, the temperature differences in the body dedag previous remark concerning the behavioutpndxs for

very rapidly with decreasing sizes. smallR’.
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Having computed the force components we can also e-96 UL B L LLLLLL L L
mate some of the orbital effects resulting from the thermal pe i 7
turbations. In particular the long-term variations of the sem 7
major axis are essential because of the original motivation - .
this work: the relevance of the Yarkovsky effect as a source 9.94 |- —
mobility for fragments in the asteroidal belt. To the zero orde L
in the eccentricitye, we easily obtain
da 8a & Eg: sindp B
E:—?g%cosv-i—@(e). (35) 40
Note the obliquity dependent factossy = s - N, whereN
is the unit vector normal to the mean orbitjs the fragment’s
orbital mean motion around the Sun. We can also remark tt i 7
the Z-component of the thermal fordg{31) does not contribu0.90 ———— ""'_1 Lol el s
to the formulal(3b) but, obviously, yields short-periodic pertul 10 10 1 10 100
bations of the fragment’s motion. The spin axis of the fragmei . R
is likely to undergo random changes due to collisions with otheig. 5. Ratio of the maximum semimajor axis drift rait/dt (for
fragments, and if these are frequent enough we conclude that 0, circular orbits) obtained by our Eq.{35) to that of Peterson
the long-term change of the semimajor axis vanishes becabige(31), as a function of the radius of the body. Thermal properties
(cosv) = 0 (as already conluded by Burns et al. 1979 arippropriate for stony fragments are assumed. A fairly good agreement

Farinella et al. 1998). throughout the relevant size range is observed despite the entirely dif-
Similarly, we can obtain the long term perturbation of thi§"ent approaches.
inclination
dI 20 @ sp(1— Ep cosdp)cosy + sqEr sindp they neglected the difference between the averaged temperature
& 9 na T\ (T_av)_anq the s_ubsolgr tempgratuﬂex. Thus affictor(_)f_ twq is
+O(e) (36) missing in their solution. This fact can be easily verified in the

limit of the instantaneous rediffusion of sunlight by the frag-

wheresp = s - P andsg = s - Q are the projections of the ment's surface. Their formula (37) yields a fac®9, instead
spin vectors onto the position vectdP of the mean pericenter of a correct valuel/9 derived here [see Eq.([32) above]. As
and the vectof) = N x P. Unlike the case of the semimajora consequence, their discussion of the reasons for a factor two
axis, theZ thermal force componenft (B1) does contribute tifference with respectto Peterson’s solution (see p. 790) is also
the long term perturbation of the inclination. Taking again thiacorrect.
mean value of[(36) over random orientations of the spinsxis A comparison with the work of Peterson (1976) is more in-
we conclude that the diurnal Yarkovsky effect leaves the metaesting (note that Farinella et al. 1998 used these results for
inclination unchanged over a long span of time. estimating the orbital drift rate due to the diurnal effect). Peter-

Finally, we observe that the eccentricity’s long term pertuson’s formula for the mean semimajor axis rate, when rewritten
bation is proportional to the first power of the eccentricity itselfn our variables, reads
(de/dt) « e. Although we might compute this term explicitly, da >
we leave a discussion of the analytically determined mean ef- = — fp(©) cos7y , (37)
bital effects to a subsequent study. Indeed, the main objective of
this paper was the derivation of the instantaneous thermal fowgiéh the functionfp given by

componentd (30) and (B1). o
p(O) =04 goie Toazer -

Interestingly, Peterson’s resUli {37) matches quite well our gen-
First, let us comment on the work of Afonso et al. (1995) whosgal formula[(3b), at least in the important case of meter-sized
results have been applied to assess the diurnal thermal effstdsy fragments — see Fi{f — despite the fact that Peterson
on the orbits of spherical bodies. It may appear that our solutinged an entirely different mathematical technique. This agrees
is only a slight generalization for the case of an arbitrary oriemdth our previous finding — that Peterson’s results are fairly
tation of the fragment’s spin axis. However, this generalizati@tcurate in the case of large bodies. Note that the thermal pen-
is essential for carrying out further numerical work. Moreoveetration depth corresponding to the rotation frequency is about
we can see that the Afonso et al. solution is not really corretf.~ 2.5+ R mm if R is given in meters (this formula follows
For instance, these authors did not notice that the axially syfrem the assumption the o R~!, according to Farinella et al.
metric (n = 0) dipole mode of the temperature distribution i4998). The deptl; is even smaller if the surface is covered by
not time-dependent. As a result, the last term in their formudathin layer of regolith or any porous material which signifi-
(31) is not correct, as it should not depend on time. Secondtgntly decreases the thermal conductivify(Rubincam 1995;

(38)
2.7. Comparison with other approaches and discussion
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view of the diurnal effect.
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Here, O isthe thermal parameterbAU from the Sun, whereas
a is the semimajor axis in AU andthe distance from the Sun.
We leave this task for a subsequent study.

As far as theoretical modelling is concerned, we note that
a careful understanding of the mixture between the diurnal and
seasonal Yarkovsky effects remains a major challenge for the
future. In the optics of this paper, one should assume that the
solar colatitudd, in (T2) — (I8) is not constant but changes on
the timescale of one revolution around the Sun. The final Fourier
expansion in the time-like variabtewould be, however, more
complicated than in the case discussed here.
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